Find the exact solution of the equation.

[tex]\[
9 \cos^{-1} x - \pi = 3 \cos^{-1} x
\][/tex]

The solution set is [tex]\(\{\square\}\)[/tex].

(Simplify your answer, including any radicals. Type an exact answer, using radicals as needed.)



Answer :

To solve the equation [tex]\( 9 \cos^{-1}(x) - \pi = 3 \cos^{-1}(x) \)[/tex], follow these steps:

1. Let's set [tex]\( y = \cos^{-1}(x) \)[/tex]. This transforms the given equation into:
[tex]\[ 9y - \pi = 3y \][/tex]

2. Simplify the equation:
[tex]\[ 9y - 3y = \pi \][/tex]
[tex]\[ 6y = \pi \][/tex]

3. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{\pi}{6} \][/tex]

4. Given that [tex]\( y = \cos^{-1}(x) \)[/tex], we now have:
[tex]\[ \cos^{-1}(x) = \frac{\pi}{6} \][/tex]

5. To solve for [tex]\( x \)[/tex], we take the cosine of both sides of the equation:
[tex]\[ x = \cos\left(\frac{\pi}{6}\right) \][/tex]

6. Recall the value of [tex]\(\cos\left(\frac{\pi}{6}\right)\)[/tex]:
[tex]\[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \][/tex]

Therefore, the solution set is:
[tex]\[ \boxed{\left\{\frac{\sqrt{3}}{2}\right\}} \][/tex]