Let [tex]f(x) = x^3 + 3x^2 - 9x + 21[/tex].

Sketch the function using a graphing tool and answer the following questions.

(a) Use the definition of a derivative or the derivative rules to find [tex]f^{\prime}(x) = \square[/tex]

(b) Use the definition of a derivative or the derivative rules to find [tex]f^{\prime \prime}(x) = \square[/tex]

(c) On what interval is [tex]f[/tex] increasing (include the endpoints in the interval)? Interval of increasing [tex]= \square[/tex]

(d) On what interval is [tex]f[/tex] decreasing (include the endpoints in the interval)? Interval of decreasing [tex]= \square[/tex]

(e) On what interval is [tex]f[/tex] concave downward (include the endpoints in the interval)? Interval of downward concavity [tex]= \square[/tex]

(f) On what interval is [tex]f[/tex] concave upward (include the endpoints in the interval)? Interval of upward concavity [tex]= \square[/tex]



Answer :

Let [tex]\( f(x) = x^3 + 3x^2 - 9x + 21 \)[/tex].

(a) To find the first derivative [tex]\( f'(x) \)[/tex], we use the rules of differentiation.
[tex]\[ f'(x) = \frac{d}{dx}(x^3 + 3x^2 - 9x + 21) = 3x^2 + 6x - 9 \][/tex]
Thus, [tex]\( f'(x) = 3x^2 + 6x - 9 \)[/tex].

(b) To find the second derivative [tex]\( f''(x) \)[/tex], we differentiate [tex]\( f'(x) \)[/tex].
[tex]\[ f''(x) = \frac{d}{dx}(3x^2 + 6x - 9) = 6x + 6 \][/tex]
Thus, [tex]\( f''(x) = 6x + 6 \)[/tex].

(c) To determine the interval where [tex]\( f \)[/tex] is increasing, we solve [tex]\( f'(x) > 0 \)[/tex]. First, find the critical points by setting [tex]\( f'(x) = 0 \)[/tex].
[tex]\[ 3x^2 + 6x - 9 = 0 \][/tex]
The solutions are:
[tex]\[ x = -3 \][/tex]
[tex]\[ x = 1 \][/tex]
An interval of increasing is identified by checking the sign of [tex]\( f'(x) \)[/tex] between critical points. There are no intervals where [tex]\( f'(x) > 0 \)[/tex]. Thus,
[tex]\[ \text{interval of increasing} = [] \][/tex]

(d) To determine the interval where [tex]\( f \)[/tex] is decreasing, we solve [tex]\( f'(x) < 0 \)[/tex]. We already found our critical points: [tex]\( x = -3 \)[/tex] and [tex]\( x = 1 \)[/tex]. We check the sign of [tex]\( f'(x) \)[/tex] in the intervals determined by these points:
[tex]\[ \text{interval of decreasing} = [(-3, 1)] \][/tex]

(e) To determine the interval where [tex]\( f \)[/tex] is concave downward, we solve [tex]\( f''(x) < 0 \)[/tex]. Critical points come from solving [tex]\( f''(x) = 0 \)[/tex], and:
[tex]\[ 6x + 6 = 0 \][/tex]
The solution is:
[tex]\[ x = -1 \][/tex]
Checking intervals on either side of [tex]\( x = -1 \)[/tex], there are no intervals where [tex]\( f''(x) < 0 \)[/tex]. Thus,
[tex]\[ \text{interval of downward concavity} = [] \][/tex]

(f) To determine the interval where [tex]\( f \)[/tex] is concave upward, we solve [tex]\( f''(x) > 0 \)[/tex]. We already found the critical point [tex]\( x = -1 \)[/tex], and there are no intervals where [tex]\( f''(x) > 0 \)[/tex]. Thus,
[tex]\[ \text{interval of upward concavity} = [] \][/tex]

In summary:
(a) [tex]\( f'(x) = 3x^2 + 6x - 9 \)[/tex]
(b) [tex]\( f''(x) = 6x + 6 \)[/tex]
(c) interval of increasing [tex]\( = [] \)[/tex]
(d) interval of decreasing [tex]\( = [(-3, 1)] \)[/tex]
(e) interval of downward concavity [tex]\( = [] \)[/tex]
(f) interval of upward concavity [tex]\( = [] \)[/tex]