For what value of [tex]x[/tex] is [tex]\sin(x) = \cos(32^\circ)[/tex], where [tex]0^\circ \ \textless \ x \ \textless \ 90^\circ[/tex]?

A. [tex]32^\circ[/tex]
B. [tex]13^\circ[/tex]
C. [tex]58^\circ[/tex]
D. [tex]64^\circ[/tex]



Answer :

To determine the value of [tex]\( x \)[/tex] such that [tex]\(\sin(x) = \cos(32^\circ)\)[/tex], where [tex]\(0^\circ < x < 90^\circ\)[/tex], we can utilize one of the fundamental trigonometric identities.

The trigonometric identity we will use is:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
This identity tells us that the sine of an angle is equal to the cosine of its complement. Therefore, if [tex]\(\sin(x) = \cos(32^\circ)\)[/tex], then we must have:
[tex]\[ x = 90^\circ - 32^\circ \][/tex]

Let's perform the subtraction:
[tex]\[ x = 90^\circ - 32^\circ = 58^\circ \][/tex]

So, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] within the given interval [tex]\(0^\circ < x < 90^\circ\)[/tex] is:
[tex]\[ x = 58^\circ \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{58^\circ} \][/tex]