Answer :
To solve the integral:
[tex]\[ \int \frac{x^3}{x^4-4} \, dx \][/tex]
we use the given substitution [tex]\( u = x^4 - 4 \)[/tex].
1. Find [tex]\( du \)[/tex] in terms of [tex]\( x \)[/tex] and [tex]\( dx \)[/tex]:
We start by differentiating [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = x^4 - 4 \][/tex]
[tex]\[ \frac{du}{dx} = 4x^3 \][/tex]
Therefore,
[tex]\[ du = 4x^3 \, dx \][/tex]
Rearranging to solve for [tex]\( dx \)[/tex],
[tex]\[ dx = \frac{du}{4x^3} \][/tex]
2. Rewrite the integral in terms of [tex]\( u \)[/tex]:
Substitute [tex]\( u = x^4 - 4 \)[/tex] and [tex]\( dx = \frac{du}{4x^3} \)[/tex] into the original integral:
[tex]\[ \int \frac{x^3}{x^4 - 4} \, dx = \int \frac{x^3}{u} \cdot \frac{du}{4x^3} \][/tex]
Simplify the integral:
[tex]\[ \int \frac{1}{u} \cdot \frac{du}{4} = \frac{1}{4} \int \frac{1}{u} \, du \][/tex]
3. Evaluate the integral:
The integral [tex]\( \int \frac{1}{u} \, du \)[/tex] is a standard integral:
[tex]\[ \int \frac{1}{u} \, du = \ln|u| + C \][/tex]
Therefore,
[tex]\[ \frac{1}{4} \int \frac{1}{u} \, du = \frac{1}{4} \ln|u| + C \][/tex]
Substitute back [tex]\( u = x^4 - 4 \)[/tex]:
[tex]\[ \frac{1}{4} \ln|x^4 - 4| + C \][/tex]
Thus, the evaluated integral is:
[tex]\[ \int \frac{x^3}{x^4 - 4} \, dx = \frac{1}{4} \ln|x^4 - 4| + C \][/tex]
[tex]\[ \int \frac{x^3}{x^4-4} \, dx \][/tex]
we use the given substitution [tex]\( u = x^4 - 4 \)[/tex].
1. Find [tex]\( du \)[/tex] in terms of [tex]\( x \)[/tex] and [tex]\( dx \)[/tex]:
We start by differentiating [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = x^4 - 4 \][/tex]
[tex]\[ \frac{du}{dx} = 4x^3 \][/tex]
Therefore,
[tex]\[ du = 4x^3 \, dx \][/tex]
Rearranging to solve for [tex]\( dx \)[/tex],
[tex]\[ dx = \frac{du}{4x^3} \][/tex]
2. Rewrite the integral in terms of [tex]\( u \)[/tex]:
Substitute [tex]\( u = x^4 - 4 \)[/tex] and [tex]\( dx = \frac{du}{4x^3} \)[/tex] into the original integral:
[tex]\[ \int \frac{x^3}{x^4 - 4} \, dx = \int \frac{x^3}{u} \cdot \frac{du}{4x^3} \][/tex]
Simplify the integral:
[tex]\[ \int \frac{1}{u} \cdot \frac{du}{4} = \frac{1}{4} \int \frac{1}{u} \, du \][/tex]
3. Evaluate the integral:
The integral [tex]\( \int \frac{1}{u} \, du \)[/tex] is a standard integral:
[tex]\[ \int \frac{1}{u} \, du = \ln|u| + C \][/tex]
Therefore,
[tex]\[ \frac{1}{4} \int \frac{1}{u} \, du = \frac{1}{4} \ln|u| + C \][/tex]
Substitute back [tex]\( u = x^4 - 4 \)[/tex]:
[tex]\[ \frac{1}{4} \ln|x^4 - 4| + C \][/tex]
Thus, the evaluated integral is:
[tex]\[ \int \frac{x^3}{x^4 - 4} \, dx = \frac{1}{4} \ln|x^4 - 4| + C \][/tex]