Let's solve the given expression:
Subtract:
[tex]\[ 5 \sqrt{12} - 2 \sqrt{3} \][/tex]
Step-by-Step Solution:
1. Simplify [tex]\( \sqrt{12} \)[/tex]:
[tex]\[ \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2 \sqrt{3} \][/tex]
2. Substitute the simplified form of [tex]\( \sqrt{12} \)[/tex] into the expression:
[tex]\[ 5 \sqrt{12} = 5 \cdot 2 \sqrt{3} = 10 \sqrt{3} \][/tex]
So now, the expression is:
[tex]\[ 10 \sqrt{3} - 2 \sqrt{3} \][/tex]
3. Combine the like terms:
[tex]\[ 10 \sqrt{3} - 2 \sqrt{3} = (10 - 2) \sqrt{3} = 8 \sqrt{3} \][/tex]
Therefore, the simplified result of the expression [tex]\( 5 \sqrt{12} - 2 \sqrt{3} \)[/tex] is:
[tex]\[ 8 \sqrt{3} \][/tex]
This means the correct answer is:
[tex]\[ 8 \sqrt{3} \][/tex]