Subtract:

[tex]\[ 5 \sqrt{12} - 2 \sqrt{3} \][/tex]

A. [tex]\( 6 \)[/tex]

B. [tex]\( 8 \sqrt{3} \)[/tex]

C. [tex]\( 12 \sqrt{3} \)[/tex]

D. [tex]\( 3 \sqrt{6} \)[/tex]



Answer :

Let's solve the given expression:

Subtract:
[tex]\[ 5 \sqrt{12} - 2 \sqrt{3} \][/tex]

Step-by-Step Solution:

1. Simplify [tex]\( \sqrt{12} \)[/tex]:
[tex]\[ \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2 \sqrt{3} \][/tex]

2. Substitute the simplified form of [tex]\( \sqrt{12} \)[/tex] into the expression:
[tex]\[ 5 \sqrt{12} = 5 \cdot 2 \sqrt{3} = 10 \sqrt{3} \][/tex]

So now, the expression is:
[tex]\[ 10 \sqrt{3} - 2 \sqrt{3} \][/tex]

3. Combine the like terms:
[tex]\[ 10 \sqrt{3} - 2 \sqrt{3} = (10 - 2) \sqrt{3} = 8 \sqrt{3} \][/tex]

Therefore, the simplified result of the expression [tex]\( 5 \sqrt{12} - 2 \sqrt{3} \)[/tex] is:
[tex]\[ 8 \sqrt{3} \][/tex]

This means the correct answer is:
[tex]\[ 8 \sqrt{3} \][/tex]