Evaluate [tex]\sin \left(\operatorname{Arccos}\left(-\frac{4}{\sqrt{25}}\right)\right)[/tex]

A. [tex]-\frac{\sqrt{25}}{\sqrt{128}}[/tex]

B. [tex]\frac{3}{\sqrt{25}}[/tex]

C. [tex]\frac{\sqrt{25}}{\sqrt{128}}[/tex]

D. [tex]-\frac{3}{\sqrt{25}}[/tex]



Answer :

To evaluate [tex]\(\sin \left(\operatorname{Arccos}\left(-\frac{4}{\sqrt{25}}\right)\right)\)[/tex], let’s go through the steps carefully.

1. Simplify the argument inside the [tex]\(\operatorname{Arccos}\)[/tex]:

Given [tex]\(-\frac{4}{\sqrt{25}}\)[/tex], we can simplify [tex]\(\sqrt{25}\)[/tex] to 5. So the expression inside [tex]\(\operatorname{Arccos}\)[/tex] becomes:
[tex]\[ -\frac{4}{\sqrt{25}} = -\frac{4}{5} = -0.8. \][/tex]

2. Identify the trigonometric identity to use:

We use the identity for the sine of the arc-cosine function:
[tex]\[ \sin(\operatorname{Arccos}(x)) = \sqrt{1 - x^2}. \][/tex]
Here, [tex]\(x = -0.8\)[/tex].

3. Calculate [tex]\(1 - x^2\)[/tex]:

First, calculate [tex]\(x^2\)[/tex]:
[tex]\[ x = -0.8 \implies x^2 = (-0.8)^2 = 0.64. \][/tex]

Then, calculate [tex]\(1 - x^2\)[/tex]:
[tex]\[ 1 - x^2 = 1 - 0.64 = 0.36. \][/tex]

4. Take the square root of the result:

[tex]\[ \sqrt{0.36} = 0.6. \][/tex]

So, [tex]\(\sin \left(\operatorname{Arccos}\left(-0.8\right)\right) = 0.6\)[/tex].

5. Validate against the provided choices:

The four options provided are:
- [tex]\(-\frac{\sqrt{25}}{\sqrt{128}}\)[/tex]
- [tex]\(\frac{3}{\sqrt{25}}\)[/tex]
- [tex]\(\frac{\sqrt{25}}{\sqrt{128}}\)[/tex]
- [tex]\(-\frac{3}{\sqrt{25}}\)[/tex]

Let’s check these values:
- [tex]\(\sqrt{25} = 5\)[/tex].
- [tex]\(\frac{3}{\sqrt{25}} = \frac{3}{5} = 0.6\)[/tex].
This matches our calculated result [tex]\(0.6\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{3}{\sqrt{25}}} \][/tex]