Evaluate the expression.

[tex]\[
\left(\frac{1}{5}\right)^4
\][/tex]

[tex]\[
\left(\frac{1}{5}\right)^4 =
\][/tex]



Answer :

To evaluate the expression [tex]\(\left(\frac{1}{5}\right)^4\)[/tex], let's follow these steps closely:

1. Understand the base and the exponent: Here, [tex]\(\frac{1}{5}\)[/tex] is the base, and [tex]\(4\)[/tex] is the exponent.
2. Interpretation of exponentiation: Raising a fraction to an exponent means multiplying that fraction by itself as many times as indicated by the exponent. So, we have:
[tex]\[ \left(\frac{1}{5}\right)^4 = \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \][/tex]
3. Multiply the fractions: To multiply fractions, you multiply the numerators together and the denominators together.

The numerator is:
[tex]\[ 1 \times 1 \times 1 \times 1 = 1 \][/tex]

The denominator is:
[tex]\[ 5 \times 5 \times 5 \times 5 \][/tex]

4. Simplify the denominator:
[tex]\[ 5 \times 5 = 25 \][/tex]
[tex]\[ 25 \times 5 = 125 \][/tex]
[tex]\[ 125 \times 5 = 625 \][/tex]

Therefore, the denominator is 625.

5. Combine the results: Combining the calculated numerator and denominator gives us:
[tex]\[ \frac{1}{625} \][/tex]

6. Convert to decimal form: To express [tex]\(\frac{1}{625}\)[/tex] in decimal form, we need to perform the division [tex]\( \frac{1}{625} \)[/tex].

7. Decimal fraction outcome: Performing the division, we find that:
[tex]\[ \frac{1}{625} = 0.0016000000000000003 \][/tex]

Thus,
[tex]\[ \left(\frac{1}{5}\right)^4 = 0.0016000000000000003 \][/tex]