a. angle of elevation
b. angle of depression
c. angle of alternate

If the mean [tex](\bar{x}) = 10[/tex], [tex]\(\Sigma fm = 200\)[/tex], and the number of terms [tex](n) = 10[/tex], what is the value of [tex]\(N\)[/tex]?



Answer :

Certainly! Let's solve this step-by-step:

Given:
- The mean, [tex]\(\bar{x}\)[/tex], is 10.
- The sum of the product of frequency and the corresponding value (denoted as [tex]\(\Sigma fm\)[/tex]) is 200.
- The number of terms, [tex]\(n\)[/tex], is given by the expression [tex]\( \frac{10}{2 \cdot 3} \)[/tex].

To determine the value of [tex]\(n\)[/tex], we simply evaluate the given expression:

1. Start with the expression for [tex]\(n\)[/tex]:
[tex]\[ n = \frac{10}{2 \cdot 3} \][/tex]

2. Calculate the denominator:
[tex]\[ 2 \cdot 3 = 6 \][/tex]

3. Now, divide the numerator by the denominator:
[tex]\[ n = \frac{10}{6} \][/tex]

4. Simplifying the fraction, we get:
[tex]\[ n = \frac{10}{6} = 1.6666666666666667 \][/tex]

So, the value of [tex]\(n\)[/tex] is approximately 1.6667.

Therefore, the values are:
- Mean ([tex]\(\bar{x}\)[/tex]) = 10
- Sum of [tex]\(fm\)[/tex] ([tex]\(\Sigma fm\)[/tex]) = 200
- Number of terms ([tex]\(n\)[/tex]) = 1.6666666666666667