Given the table below, find the expected value of the random variable [tex]\( X \)[/tex].

[tex]\[
\begin{tabular}{|r|r|}
\hline
$X$ & $P(X)$ \\
\hline
-10 & 0.4 \\
\hline
8 & 0.6 \\
\hline
\end{tabular}
\][/tex]

Find the expected value of the above random variable. [tex]\(\square\)[/tex]



Answer :

To find the expected value of a discrete random variable, we use the formula:

[tex]\[ E(X) = \sum (x \cdot P(x)) \][/tex]

In this case, we have the values of [tex]\( X \)[/tex] and their corresponding probabilities [tex]\( P(X) \)[/tex]:

[tex]\[ X = [-10, 8] \][/tex]
[tex]\[ P(X) = [0.4, 0.6] \][/tex]

We will calculate the expected value step by step.

1. Multiply each value of [tex]\( X \)[/tex] by its corresponding probability:

- For [tex]\( X = -10 \)[/tex] with [tex]\( P(X) = 0.4 \)[/tex]:
[tex]\[ -10 \times 0.4 = -4 \][/tex]

- For [tex]\( X = 8 \)[/tex] with [tex]\( P(X) = 0.6 \)[/tex]:
[tex]\[ 8 \times 0.6 = 4.8 \][/tex]

2. Add these results together to find the expected value:

[tex]\[ -4 + 4.8 = 0.7999999999999998 \][/tex]

Thus, the expected value [tex]\( E(X) \)[/tex] of the given random variable is:

[tex]\[ 0.7999999999999998 \][/tex]