Answer :
To find the expected value of a discrete random variable, we use the formula:
[tex]\[ E(X) = \sum (x \cdot P(x)) \][/tex]
In this case, we have the values of [tex]\( X \)[/tex] and their corresponding probabilities [tex]\( P(X) \)[/tex]:
[tex]\[ X = [-10, 8] \][/tex]
[tex]\[ P(X) = [0.4, 0.6] \][/tex]
We will calculate the expected value step by step.
1. Multiply each value of [tex]\( X \)[/tex] by its corresponding probability:
- For [tex]\( X = -10 \)[/tex] with [tex]\( P(X) = 0.4 \)[/tex]:
[tex]\[ -10 \times 0.4 = -4 \][/tex]
- For [tex]\( X = 8 \)[/tex] with [tex]\( P(X) = 0.6 \)[/tex]:
[tex]\[ 8 \times 0.6 = 4.8 \][/tex]
2. Add these results together to find the expected value:
[tex]\[ -4 + 4.8 = 0.7999999999999998 \][/tex]
Thus, the expected value [tex]\( E(X) \)[/tex] of the given random variable is:
[tex]\[ 0.7999999999999998 \][/tex]
[tex]\[ E(X) = \sum (x \cdot P(x)) \][/tex]
In this case, we have the values of [tex]\( X \)[/tex] and their corresponding probabilities [tex]\( P(X) \)[/tex]:
[tex]\[ X = [-10, 8] \][/tex]
[tex]\[ P(X) = [0.4, 0.6] \][/tex]
We will calculate the expected value step by step.
1. Multiply each value of [tex]\( X \)[/tex] by its corresponding probability:
- For [tex]\( X = -10 \)[/tex] with [tex]\( P(X) = 0.4 \)[/tex]:
[tex]\[ -10 \times 0.4 = -4 \][/tex]
- For [tex]\( X = 8 \)[/tex] with [tex]\( P(X) = 0.6 \)[/tex]:
[tex]\[ 8 \times 0.6 = 4.8 \][/tex]
2. Add these results together to find the expected value:
[tex]\[ -4 + 4.8 = 0.7999999999999998 \][/tex]
Thus, the expected value [tex]\( E(X) \)[/tex] of the given random variable is:
[tex]\[ 0.7999999999999998 \][/tex]