Select the correct answer.

What is the simplified form of this expression?
[tex]\[
\left(3 x^2 + x + 5\right) - \left(4 x^2 - 2 x\right)
\][/tex]

A. [tex]\(-x^2 + 3x - 11\)[/tex]
B. [tex]\(7x^2 + 3x - 5\)[/tex]
C. [tex]\(-7x^2 + 3x + 5\)[/tex]
D. [tex]\(x^2 - x + 5\)[/tex]



Answer :

Sure! Let's simplify the given expression step-by-step:

Given expression:
[tex]\[ (3x^2 + x + 5) - (4x^2 - 2x) \][/tex]

1. Expand the expression by distributing the negative sign:
[tex]\[ 3x^2 + x + 5 - 4x^2 + 2x \][/tex]

2. Combine like terms:

Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 - 4x^2 = -x^2 \][/tex]

Combine the [tex]\(x\)[/tex] terms:
[tex]\[ x + 2x = 3x \][/tex]

There is only one constant term:
[tex]\[ 5 \][/tex]

3. Put all the combined terms together:
[tex]\[ -x^2 + 3x + 5 \][/tex]

So, the simplified form of the expression is:
[tex]\[ -x^2 + 3x + 5 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{-x^2 + 3x + 5} \][/tex]

None of the given choices (A, B, C, D) match this simplified form. Based on the detailed, step-by-step solution, the simplified form is indeed [tex]\(-x^2 + 3x + 5\)[/tex]. Please recheck the provided choices.