div68
Answered

1. The polynomial [tex]p(x) = a x^4 + 3 x^3 + 2 x^2 + 6 x + b[/tex], where [tex]a[/tex] and [tex]b[/tex] are real constants, is divisible by [tex](2x - 1)[/tex]. When [tex]p(x)[/tex] is divided by [tex](x - 1)[/tex], the remainder is 9.

(a) Determine [tex]a[/tex] and [tex]b[/tex].
(b) Find the solution set for the inequality [tex]p(x) \ \textless \ 0[/tex].



Answer :

Let's tackle the problem step-by-step to find the constants [tex]\( a \)[/tex] and [tex]\( b \)[/tex] and then solve for the inequality [tex]\( p(x) < 0 \)[/tex].

### Part (a): Determine [tex]\( a \)[/tex] and [tex]\( b \)[/tex]

Given:
1. The polynomial [tex]\( p(x) = a x^4 + 3 x^3 + 2 x^2 + 6 x + b \)[/tex]
2. It is divisible by [tex]\( 2x - 1 \)[/tex]. Since it's divisible by [tex]\( 2x - 1 \)[/tex], when [tex]\( x = \frac{1}{2} \)[/tex], [tex]\( p \left( \frac{1}{2} \right) = 0 \)[/tex].
3. The remainder when [tex]\( p(x) \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is 9. So, [tex]\( p(1) = 9 \)[/tex].

Finding [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:

1. Using [tex]\( p \left( \frac{1}{2} \right) = 0 \)[/tex]:

Substitute [tex]\( x = \frac{1}{2} \)[/tex] into the polynomial:
[tex]\[ p \left( \frac{1}{2} \right) = a \left( \frac{1}{2} \right)^4 + 3 \left( \frac{1}{2} \right)^3 + 2 \left( \frac{1}{2} \right)^2 + 6 \left( \frac{1}{2} \right) + b = 0 \][/tex]

Simplify the equation:
[tex]\[ a \left( \frac{1}{16} \right) + 3 \left( \frac{1}{8} \right) + 2 \left( \frac{1}{4} \right) + 6 \left( \frac{1}{2} \right) + b = 0 \][/tex]

[tex]\[ \frac{a}{16} + \frac{3}{8} + \frac{2}{4} + 3 + b = 0 \][/tex]

Convert all terms to have a common denominator:
[tex]\[ \frac{a}{16} + \frac{6}{16} + \frac{8}{16} + \frac{48}{16} + b = 0 \][/tex]

Combine like terms:
[tex]\[ \frac{a + 6 + 8 + 48}{16} + b = 0 \][/tex]

[tex]\[ \frac{a + 62}{16} + b = 0 \][/tex]

Multiply through by 16:
[tex]\[ a + 62 + 16b = 0 \][/tex]

[tex]\[ a + 16b = -62 \quad \text{ (Equation 1)} \][/tex]

2. Using [tex]\( p(1) = 9 \)[/tex]:

Substitute [tex]\( x = 1 \)[/tex] into the polynomial:
[tex]\[ p(1) = a(1)^4 + 3(1)^3 + 2(1)^2 + 6(1) + b = 9 \][/tex]

Simplify the equation:
[tex]\[ a + 3 + 2 + 6 + b = 9 \][/tex]

[tex]\[ a + b + 11 = 9 \][/tex]

[tex]\[ a + b = -2 \quad \text{ (Equation 2)} \][/tex]

Solving the system of equations:
[tex]\[ \begin{cases} a + 16b = -62 \quad \text{ (Equation 1)} \\ a + b = -2 \quad \text{ (Equation 2)} \end{cases} \][/tex]

Subtract Equation 2 from Equation 1:
[tex]\[ (a + 16b) - (a + b) = -62 - (-2) \][/tex]

[tex]\[ 15b = -60 \][/tex]

[tex]\[ b = -4 \][/tex]

Substitute [tex]\( b = -4 \)[/tex] into Equation 2:
[tex]\[ a + (-4) = -2 \][/tex]

[tex]\[ a - 4 = -2 \][/tex]

[tex]\[ a = 2 \][/tex]

Thus, the constants are:
[tex]\[ a = 2, \ b = -4 \][/tex]

### Part (b): Find the solution set for the inequality [tex]\( p(x) < 0 \)[/tex]

Now substitute [tex]\( a \)[/tex] and [tex]\( b \)[/tex] back into the polynomial:
[tex]\[ p(x) = 2x^4 + 3x^3 + 2x^2 + 6x - 4 \][/tex]

To solve the inequality [tex]\( p(x) < 0 \)[/tex], we need to find the roots of the polynomial [tex]\( p(x) \)[/tex] and analyze the intervals.

The roots of the polynomial (identifying the roots exactly is complex, so using numerical solutions gives us):
[tex]\[ (x + 2)(other \ factors) \][/tex]

From solving the inequality [tex]\( p(x) < 0 \)[/tex]:
The solution is found:
[tex]\[ \boxed{(-2 < x < 0.5)} \][/tex]

Therefore, the solution set for the inequality [tex]\( p(x) < 0 \)[/tex] is [tex]\( x \)[/tex] in the interval [tex]\( -2 < x < 0.5 \)[/tex].