Answer :
Sure, let's find the solutions to the equation [tex]\( y = 0.5x - 2 \)[/tex] for the given values of [tex]\( x \)[/tex].
1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = 0.5(-2) - 2 = -1 - 2 = -3.0 \][/tex]
Therefore, when [tex]\( x = -2 \)[/tex], [tex]\( y = -3.0 \)[/tex].
2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 0.5(-1) - 2 = -0.5 - 2 = -2.5 \][/tex]
Therefore, when [tex]\( x = -1 \)[/tex], [tex]\( y = -2.5 \)[/tex].
3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0.5(0) - 2 = 0 - 2 = -2.0 \][/tex]
Therefore, when [tex]\( x = 0 \)[/tex], [tex]\( y = -2.0 \)[/tex].
4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 0.5(1) - 2 = 0.5 - 2 = -1.5 \][/tex]
Therefore, when [tex]\( x = 1 \)[/tex], [tex]\( y = -1.5 \)[/tex].
5. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 0.5(2) - 2 = 1 - 2 = -1.0 \][/tex]
Therefore, when [tex]\( x = 2 \)[/tex], [tex]\( y = -1.0 \)[/tex].
Now, we can fill in the table with the values we calculated:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & -3.0 \\ \hline -1 & -2.5 \\ \hline 0 & -2.0 \\ \hline 1 & -1.5 \\ \hline 2 & -1.0 \\ \hline \end{tabular} \][/tex]
So, the table is complete with the corresponding [tex]\( y \)[/tex] values for the given [tex]\( x \)[/tex] values.
1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = 0.5(-2) - 2 = -1 - 2 = -3.0 \][/tex]
Therefore, when [tex]\( x = -2 \)[/tex], [tex]\( y = -3.0 \)[/tex].
2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 0.5(-1) - 2 = -0.5 - 2 = -2.5 \][/tex]
Therefore, when [tex]\( x = -1 \)[/tex], [tex]\( y = -2.5 \)[/tex].
3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0.5(0) - 2 = 0 - 2 = -2.0 \][/tex]
Therefore, when [tex]\( x = 0 \)[/tex], [tex]\( y = -2.0 \)[/tex].
4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 0.5(1) - 2 = 0.5 - 2 = -1.5 \][/tex]
Therefore, when [tex]\( x = 1 \)[/tex], [tex]\( y = -1.5 \)[/tex].
5. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 0.5(2) - 2 = 1 - 2 = -1.0 \][/tex]
Therefore, when [tex]\( x = 2 \)[/tex], [tex]\( y = -1.0 \)[/tex].
Now, we can fill in the table with the values we calculated:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -2 & -3.0 \\ \hline -1 & -2.5 \\ \hline 0 & -2.0 \\ \hline 1 & -1.5 \\ \hline 2 & -1.0 \\ \hline \end{tabular} \][/tex]
So, the table is complete with the corresponding [tex]\( y \)[/tex] values for the given [tex]\( x \)[/tex] values.