Answer :
Let's solve the system of equations using the elimination method.
Given system:
[tex]\[ \begin{cases} -4x - 2y = -12 \\ 2x + 4y = -12 \end{cases} \][/tex]
Step 1: Simplify the equations if possible.
Looking at our system, each term can be divided by 2 to make calculations easier:
[tex]\[ \begin{cases} -2x - y = -6 \quad \text{ (Dividing the first equation by 2)} \\ x + 2y = -6 \quad \text{(Dividing the second equation by 2)} \end{cases} \][/tex]
Our simplified system of equations is now:
[tex]\[ \begin{cases} -2x - y = -6 \\ x + 2y = -6 \end{cases} \][/tex]
Step 2: Align the equations to eliminate one variable.
To eliminate [tex]\(y\)[/tex], we can multiply the second equation by 2 so that the coefficients of [tex]\(y\)[/tex] in both equations will be the same:
[tex]\[ \begin{cases} -2x - y = -6 \\ 2(x + 2y) = 2(-6) \end{cases} \][/tex]
This results in:
[tex]\[ \begin{cases} -2x - y = -6 \\ 2x + 4y = -12 \end{cases} \][/tex]
Step 3: Add the equations to eliminate [tex]\(x\)[/tex].
By adding these two equations together, the [tex]\(x\)[/tex] terms will cancel out:
[tex]\[ (-2x - y) + (2x + 4y) = -6 + (-12) \][/tex]
Simplifying, we get:
[tex]\[ -2x + 2x - y + 4y = -6 - 12 \][/tex]
[tex]\[ 3y = -18 \][/tex]
Step 4: Solve for [tex]\(y\)[/tex].
[tex]\[ y = \frac{-18}{3} \][/tex]
[tex]\[ y = -6 \][/tex]
Step 5: Substitute [tex]\(y\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex].
Using the simplified second equation [tex]\(x + 2y = -6\)[/tex]:
[tex]\[ x + 2(-6) = -6 \][/tex]
[tex]\[ x - 12 = -6 \][/tex]
Adding 12 to both sides:
[tex]\[ x = 6 \][/tex]
So, the solution to the system of equations is:
[tex]\[ x = 6, \quad y = -6 \][/tex]
Therefore, the solution of the system is:
[tex]\[ \boxed{6} \quad \text{and} \quad \boxed{-6} \][/tex]
Given system:
[tex]\[ \begin{cases} -4x - 2y = -12 \\ 2x + 4y = -12 \end{cases} \][/tex]
Step 1: Simplify the equations if possible.
Looking at our system, each term can be divided by 2 to make calculations easier:
[tex]\[ \begin{cases} -2x - y = -6 \quad \text{ (Dividing the first equation by 2)} \\ x + 2y = -6 \quad \text{(Dividing the second equation by 2)} \end{cases} \][/tex]
Our simplified system of equations is now:
[tex]\[ \begin{cases} -2x - y = -6 \\ x + 2y = -6 \end{cases} \][/tex]
Step 2: Align the equations to eliminate one variable.
To eliminate [tex]\(y\)[/tex], we can multiply the second equation by 2 so that the coefficients of [tex]\(y\)[/tex] in both equations will be the same:
[tex]\[ \begin{cases} -2x - y = -6 \\ 2(x + 2y) = 2(-6) \end{cases} \][/tex]
This results in:
[tex]\[ \begin{cases} -2x - y = -6 \\ 2x + 4y = -12 \end{cases} \][/tex]
Step 3: Add the equations to eliminate [tex]\(x\)[/tex].
By adding these two equations together, the [tex]\(x\)[/tex] terms will cancel out:
[tex]\[ (-2x - y) + (2x + 4y) = -6 + (-12) \][/tex]
Simplifying, we get:
[tex]\[ -2x + 2x - y + 4y = -6 - 12 \][/tex]
[tex]\[ 3y = -18 \][/tex]
Step 4: Solve for [tex]\(y\)[/tex].
[tex]\[ y = \frac{-18}{3} \][/tex]
[tex]\[ y = -6 \][/tex]
Step 5: Substitute [tex]\(y\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex].
Using the simplified second equation [tex]\(x + 2y = -6\)[/tex]:
[tex]\[ x + 2(-6) = -6 \][/tex]
[tex]\[ x - 12 = -6 \][/tex]
Adding 12 to both sides:
[tex]\[ x = 6 \][/tex]
So, the solution to the system of equations is:
[tex]\[ x = 6, \quad y = -6 \][/tex]
Therefore, the solution of the system is:
[tex]\[ \boxed{6} \quad \text{and} \quad \boxed{-6} \][/tex]