Answer :
To determine the electric force between two balloons with the given charges using Coulomb's law, we follow these steps:
1. Identify the charges and the distance between them:
- Charge 1 ([tex]\( q_1 \)[/tex]) is [tex]\(4.0 \times 10^{-6}\)[/tex] coulombs.
- Charge 2 ([tex]\( q_2 \)[/tex]) is [tex]\(8.2 \times 10^{-6}\)[/tex] coulombs.
- The distance ([tex]\( r \)[/tex]) between the charges is 2.0 meters.
- Coulomb's constant ([tex]\( k \)[/tex]) is [tex]\(9.0 \times 10^9 \)[/tex] N m²/C².
2. Write down Coulomb's law formula:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where [tex]\( F \)[/tex] is the magnitude of the electric force between the two charges.
3. Substitute the given values into the formula:
[tex]\[ F = 9.0 \times 10^9 \frac{|4.0 \times 10^{-6} \cdot 8.2 \times 10^{-6}|}{2.0^2} \][/tex]
4. Calculate the product of the charges:
[tex]\[ q_1 \cdot q_2 = (4.0 \times 10^{-6}) \cdot (8.2 \times 10^{-6}) = 32.8 \times 10^{-12} \text{Coulomb}^2 \][/tex]
5. Compute the square of the distance:
[tex]\[ r^2 = (2.0)^2 = 4.0 \text{m}^2 \][/tex]
6. Substitute the values into the formula:
[tex]\[ F = 9.0 \times 10^9 \frac{32.8 \times 10^{-12}}{4.0} \][/tex]
7. Simplify the expression:
[tex]\[ F = 9.0 \times 10^9 \times 8.2 \times 10^{-12} \][/tex]
8. Perform the multiplication to find the force:
[tex]\[ F = 0.0738 \text{ newtons} \][/tex]
Therefore, the answer is:
c. [tex]\(7.3 \times 10^{-2}\)[/tex] newtons
1. Identify the charges and the distance between them:
- Charge 1 ([tex]\( q_1 \)[/tex]) is [tex]\(4.0 \times 10^{-6}\)[/tex] coulombs.
- Charge 2 ([tex]\( q_2 \)[/tex]) is [tex]\(8.2 \times 10^{-6}\)[/tex] coulombs.
- The distance ([tex]\( r \)[/tex]) between the charges is 2.0 meters.
- Coulomb's constant ([tex]\( k \)[/tex]) is [tex]\(9.0 \times 10^9 \)[/tex] N m²/C².
2. Write down Coulomb's law formula:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where [tex]\( F \)[/tex] is the magnitude of the electric force between the two charges.
3. Substitute the given values into the formula:
[tex]\[ F = 9.0 \times 10^9 \frac{|4.0 \times 10^{-6} \cdot 8.2 \times 10^{-6}|}{2.0^2} \][/tex]
4. Calculate the product of the charges:
[tex]\[ q_1 \cdot q_2 = (4.0 \times 10^{-6}) \cdot (8.2 \times 10^{-6}) = 32.8 \times 10^{-12} \text{Coulomb}^2 \][/tex]
5. Compute the square of the distance:
[tex]\[ r^2 = (2.0)^2 = 4.0 \text{m}^2 \][/tex]
6. Substitute the values into the formula:
[tex]\[ F = 9.0 \times 10^9 \frac{32.8 \times 10^{-12}}{4.0} \][/tex]
7. Simplify the expression:
[tex]\[ F = 9.0 \times 10^9 \times 8.2 \times 10^{-12} \][/tex]
8. Perform the multiplication to find the force:
[tex]\[ F = 0.0738 \text{ newtons} \][/tex]
Therefore, the answer is:
c. [tex]\(7.3 \times 10^{-2}\)[/tex] newtons