Use the work shown below to answer the following question.

[tex]\[
\begin{array}{l}
\frac{\sqrt{3}}{\sqrt{3}-\sqrt{x}}\left(\frac{\sqrt{3}+\sqrt{x}}{\sqrt{3}+\sqrt{x}}\right) \\
=\frac{\sqrt{3}(\sqrt{3}+\sqrt{x})}{(\sqrt{3}-\sqrt{x})(\sqrt{3}+\sqrt{x})} \\
=\frac{\sqrt{3}(\sqrt{3})+\sqrt{3}(\sqrt{x})}{(\sqrt{3})^2-(\sqrt{x})^2}
\end{array}
\][/tex]

What is [tex]\(\frac{\sqrt{3}}{\sqrt{3}-\sqrt{x}}\)[/tex] in simplest form?

A. [tex]\(\frac{9+\sqrt{3 x}}{3-x}\)[/tex]

B. [tex]\(\frac{3+\sqrt{3 x}}{3-x}\)[/tex]

C. [tex]\(\frac{9+\sqrt{3 x}}{3+x}\)[/tex]

D. [tex]\(\frac{\sqrt{3}+\sqrt{x}}{3+x}\)[/tex]



Answer :

To simplify [tex]\(\frac{\sqrt{3}}{\sqrt{3}-\sqrt{x}}\)[/tex], let's go through the steps shown in the work:

1. Start with the original expression:
[tex]\[ \frac{\sqrt{3}}{\sqrt{3}-\sqrt{x}} \][/tex]

2. Multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{\sqrt{3}}{\sqrt{3}-\sqrt{x}} \times \frac{\sqrt{3}+\sqrt{x}}{\sqrt{3}+\sqrt{x}} = \frac{\sqrt{3}(\sqrt{3}+\sqrt{x})}{(\sqrt{3}-\sqrt{x})(\sqrt{3}+\sqrt{x})} \][/tex]

3. Simplify the numerator:
[tex]\[ \sqrt{3}(\sqrt{3}+\sqrt{x}) = \sqrt{3}\cdot\sqrt{3} + \sqrt{3}\cdot\sqrt{x} = 3 + \sqrt{3x} \][/tex]

4. Simplify the denominator using the difference of squares:
[tex]\[ (\sqrt{3}-\sqrt{x})(\sqrt{3}+\sqrt{x}) = (\sqrt{3})^2 - (\sqrt{x})^2 = 3 - x \][/tex]

5. Combine the simplified numerator and denominator:
[tex]\[ \frac{3 + \sqrt{3x}}{3 - x} \][/tex]

So, the simplest form of [tex]\(\frac{\sqrt{3}}{\sqrt{3}-\sqrt{x}}\)[/tex] is:
[tex]\[ \frac{3 + \sqrt{3x}}{3 - x} \][/tex]

Among the given options, this corresponds to:
[tex]\[ \boxed{\frac{3+\sqrt{3 x}}{3-x}} \][/tex]