Use the expression below to complete the following tasks.

[tex] \left(3a^2 - 5ab + b^2\right) - \left(-3a^2 + 2b^2 + 8ab\right) [/tex]



Answer :

To solve the given expression, we need to first simplify it step-by-step. Let's break it down to its components and simplify accordingly.

The given expression is:
[tex]\[ \left(3a^2 - 5ab + b^2\right) - \left(-3a^2 + 2b^2 + 8ab\right) \][/tex]

Here are the steps to simplify it:

### Step 1: Distribute the negative sign into the second group
First, we distribute the negative sign into the second parenthesis:
[tex]\[ = 3a^2 - 5ab + b^2 - (-3a^2 + 2b^2 + 8ab) \][/tex]

This results in:
[tex]\[ = 3a^2 - 5ab + b^2 + 3a^2 - 2b^2 - 8ab \][/tex]

### Step 2: Combine like terms
Next, we combine like terms:

- Combine the [tex]\(a^2\)[/tex] terms:
[tex]\[ = 3a^2 + 3a^2 = 6a^2 \][/tex]

- Combine the [tex]\(ab\)[/tex] terms:
[tex]\[ = -5ab - 8ab = -13ab \][/tex]

- Combine the [tex]\(b^2\)[/tex] terms:
[tex]\[ = b^2 - 2b^2 = -b^2 \][/tex]

### Step 3: Write the simplified expression
Now, we put all the combined terms together:

[tex]\[ 6a^2 - 13ab - b^2 \][/tex]

So, the simplified expression is:
[tex]\[ 6a^2 - 13ab - b^2 \][/tex]