Fiona draws a circle with a diameter of 14 meters. What is the area of Fiona's circle?

A. [tex]\(7 \pi \, \text{m}^2\)[/tex]

B. [tex]\(14 \pi \, \text{m}^2\)[/tex]

C. [tex]\(28 \pi \, \text{m}^2\)[/tex]

D. [tex]\(49 \pi \, \text{m}^2\)[/tex]



Answer :

To find the area of Fiona's circle, we need to follow these steps:

1. Determine the radius:
- The radius [tex]\( r \)[/tex] of a circle is half of its diameter. Since the diameter of Fiona's circle is 14 meters, we calculate the radius as follows:
[tex]\[ r = \frac{\text{diameter}}{2} = \frac{14}{2} = 7 \text{ meters} \][/tex]

2. Use the formula for the area of a circle:
- The formula for the area [tex]\( A \)[/tex] of a circle is given by:
[tex]\[ A = \pi r^2 \][/tex]

3. Calculate the area:
- Now, we substitute the radius [tex]\( r = 7 \)[/tex] meters into the area formula:
[tex]\[ A = \pi (7)^2 = \pi \times 49 \][/tex]
Thus,
[tex]\[ A = 49 \pi \text{ square meters} \][/tex]

So, the area of Fiona's circle is [tex]\( 49 \pi \)[/tex] square meters.

Given the available choices, the correct answer is:
[tex]\[ 49 \pi \text{ m}^2 \][/tex]