What is the quotient [tex]\(\left(2x^3 - 3x^2 - 14x + 15\right) \div (x - 3)\)[/tex]?

A. [tex]\(2x^2 + 3x - 5\)[/tex]

B. [tex]\(2x^2 - 3x + 5\)[/tex]

C. [tex]\(2x^2 - 3x - 5\)[/tex]

D. [tex]\(2x^2 + 3x + 5\)[/tex]



Answer :

To find the quotient of [tex]\((2x^3 - 3x^2 - 14x + 15) \div (x - 3)\)[/tex], we perform polynomial long division. Let's go through the process step-by-step.

1. Set up the division:
[tex]\[ \frac{2x^3 - 3x^2 - 14x + 15}{x - 3} \][/tex]

2. Divide the first term of the numerator by the first term of the divisor:
[tex]\[ \frac{2x^3}{x} = 2x^2 \][/tex]

3. Multiply the divisor by the result from step 2 and subtract from the numerator:
[tex]\[ (2x^3 - 3x^2 - 14x + 15) - (2x^2 \cdot (x - 3)) = 2x^3 - 3x^2 - 14x + 15 - (2x^3 - 6x^2) = 3x^2 - 14x + 15 \][/tex]

4. Repeat the previous steps for the new polynomial (3x^2 - 14x + 15):
[tex]\[ \frac{3x^2}{x} = 3x \][/tex]
[tex]\[ (3x^2 - 14x + 15) - (3x \cdot (x - 3)) = 3x^2 - 14x + 15 - (3x^2 - 9x) = -5x + 15 \][/tex]

5. Repeat again for the resulting polynomial (-5x + 15):
[tex]\[ \frac{-5x}{x} = -5 \][/tex]
[tex]\[ (-5x + 15) - (-5 \cdot (x - 3)) = -5x + 15 - (-5x + 15) = 0 \][/tex]

Since the remainder is 0, we have completed the division, and the quotient is:
[tex]\[ 2x^2 + 3x - 5 \][/tex]

Therefore, the correct answer is:
[tex]\[ 2x^2 + 3x - 5 \][/tex]

So, the quotient [tex]\((2x^3 - 3x^2 - 14x + 15) \div (x - 3)\)[/tex] is:
[tex]\[ \boxed{2x^2 + 3x - 5} \][/tex]