Triangle [tex]\( A (-3,-2), B (0,0), C (-2,3) \)[/tex] is translated by [tex]\( (x-2, y-5) \)[/tex]. What are the coordinates for [tex]\( C' \)[/tex]?

A. [tex]\( C'(-4,-2) \)[/tex]
B. [tex]\( C'(0,-2) \)[/tex]
C. [tex]\( C'(-4,2) \)[/tex]
D. [tex]\( C'(-2,-4) \)[/tex]



Answer :

To solve this problem, we need to apply the given translation to the coordinates of point [tex]\( C \)[/tex]. Let's go through the steps of this process:

1. Identify the original coordinates of point [tex]\( C \)[/tex]:
[tex]\[ C(-2, 3) \][/tex]

2. Understand the translation vector, which states that each point [tex]\((x, y)\)[/tex] will be translated to [tex]\( (x-2, y-5) \)[/tex]:
[tex]\[ \text{Translation vector:} (-2, -5) \][/tex]

3. Apply the translation to the coordinates of [tex]\( C \)[/tex]:
- The x-coordinate of [tex]\( C \)[/tex] is [tex]\(-2\)[/tex]. After applying the translation, this coordinate becomes:
[tex]\[ -2 + (-2) = -2 - 2 = -4 \][/tex]

- The y-coordinate of [tex]\( C \)[/tex] is [tex]\( 3 \)[/tex]. After applying the translation, this coordinate becomes:
[tex]\[ 3 + (-5) = 3 - 5 = -2 \][/tex]

4. Combine the new x and y coordinates to find the translated coordinates of [tex]\( C \)[/tex]:
[tex]\[ C'(-4, -2) \][/tex]

Thus, the coordinates for [tex]\( C' \)[/tex] after translation are [tex]\( (-4, -2) \)[/tex]. Therefore, the correct answer is:

[tex]\[ C^{\prime}(-4, -2) \][/tex]