Answer :
To solve this problem, we need to apply the given translation to the coordinates of point [tex]\( C \)[/tex]. Let's go through the steps of this process:
1. Identify the original coordinates of point [tex]\( C \)[/tex]:
[tex]\[ C(-2, 3) \][/tex]
2. Understand the translation vector, which states that each point [tex]\((x, y)\)[/tex] will be translated to [tex]\( (x-2, y-5) \)[/tex]:
[tex]\[ \text{Translation vector:} (-2, -5) \][/tex]
3. Apply the translation to the coordinates of [tex]\( C \)[/tex]:
- The x-coordinate of [tex]\( C \)[/tex] is [tex]\(-2\)[/tex]. After applying the translation, this coordinate becomes:
[tex]\[ -2 + (-2) = -2 - 2 = -4 \][/tex]
- The y-coordinate of [tex]\( C \)[/tex] is [tex]\( 3 \)[/tex]. After applying the translation, this coordinate becomes:
[tex]\[ 3 + (-5) = 3 - 5 = -2 \][/tex]
4. Combine the new x and y coordinates to find the translated coordinates of [tex]\( C \)[/tex]:
[tex]\[ C'(-4, -2) \][/tex]
Thus, the coordinates for [tex]\( C' \)[/tex] after translation are [tex]\( (-4, -2) \)[/tex]. Therefore, the correct answer is:
[tex]\[ C^{\prime}(-4, -2) \][/tex]
1. Identify the original coordinates of point [tex]\( C \)[/tex]:
[tex]\[ C(-2, 3) \][/tex]
2. Understand the translation vector, which states that each point [tex]\((x, y)\)[/tex] will be translated to [tex]\( (x-2, y-5) \)[/tex]:
[tex]\[ \text{Translation vector:} (-2, -5) \][/tex]
3. Apply the translation to the coordinates of [tex]\( C \)[/tex]:
- The x-coordinate of [tex]\( C \)[/tex] is [tex]\(-2\)[/tex]. After applying the translation, this coordinate becomes:
[tex]\[ -2 + (-2) = -2 - 2 = -4 \][/tex]
- The y-coordinate of [tex]\( C \)[/tex] is [tex]\( 3 \)[/tex]. After applying the translation, this coordinate becomes:
[tex]\[ 3 + (-5) = 3 - 5 = -2 \][/tex]
4. Combine the new x and y coordinates to find the translated coordinates of [tex]\( C \)[/tex]:
[tex]\[ C'(-4, -2) \][/tex]
Thus, the coordinates for [tex]\( C' \)[/tex] after translation are [tex]\( (-4, -2) \)[/tex]. Therefore, the correct answer is:
[tex]\[ C^{\prime}(-4, -2) \][/tex]