Which expression is equivalent to [tex]\left(\frac{m^5 n}{p q^2}\right)^4[/tex]?

A. [tex]\frac{m^9 n^5}{p^5 q^6}[/tex]

B. [tex]\frac{m^{20} n^4}{p q^2}[/tex]

C. [tex]\frac{m^{20} n^4}{p^4 q^8}[/tex]

D. [tex]\frac{m^9 n^4}{p^4 q^6}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\left(\frac{m^5 n}{p q^2}\right)^4\)[/tex], we will use the laws of exponents to simplify the expression step-by-step.

Starting with the given expression:
[tex]\[ \left(\frac{m^5 n}{p q^2}\right)^4 \][/tex]

Apply the power of a quotient rule, which states [tex]\(\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}\)[/tex]:
[tex]\[ \left(\frac{m^5 n}{p q^2}\right)^4 = \frac{(m^5 n)^4}{(p q^2)^4} \][/tex]

First, simplify the numerator [tex]\((m^5 n)^4\)[/tex] by using the power rule [tex]\((a^m b^n)^p = a^{m \cdot p} b^{n \cdot p}\)[/tex]:
[tex]\[ (m^5 n)^4 = m^{5 \cdot 4} \cdot n^{1 \cdot 4} = m^{20} n^4 \][/tex]

Next, simplify the denominator [tex]\((p q^2)^4\)[/tex] by applying the same power rule:
[tex]\[ (p q^2)^4 = p^{1 \cdot 4} \cdot q^{2 \cdot 4} = p^4 q^8 \][/tex]

Combine the simplified numerator and denominator:
[tex]\[ \frac{m^{20} n^4}{p^4 q^8} \][/tex]

Therefore, the simplified expression equivalent to [tex]\(\left(\frac{m^5 n}{p q^2}\right)^4\)[/tex] is:
[tex]\[ \frac{m^{20} n^4}{p^4 q^8} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{\frac{m^{20} n^4}{p^4 q^8}} \][/tex]