Recall that to simplify a square root, you can write the radicand as a product with factors that are perfect squares.

For example:
[tex]\[
\sqrt{108} = \sqrt{36 \cdot 3} = 6\sqrt{3}
\][/tex]

Simplify: [tex]\(\sqrt{240}\)[/tex]

A. [tex]\(4\sqrt{15}\)[/tex]

B. [tex]\(4 + \sqrt{15}\)[/tex]

C. [tex]\(16\sqrt{15}\)[/tex]

D. [tex]\(16 + \sqrt{15}\)[/tex]



Answer :

Certainly, let’s simplify the expression [tex]\(\sqrt{240}\)[/tex].

First, let's factorize 240 into products that include perfect squares:

1. Identify the prime factorization of 240:
[tex]\[ 240 = 2^4 \times 3 \times 5 \][/tex]
2. From this factorization, we can group the factors to identify the largest perfect square:
[tex]\[ 240 = (2^4) \times (3 \times 5) = 16 \times 15 \][/tex]

3. Now, using the property of square roots, [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex], we can simplify:
[tex]\[ \sqrt{240} = \sqrt{16 \times 15} = \sqrt{16} \times \sqrt{15} \][/tex]
4. Recognizing that [tex]\(\sqrt{16} = 4\)[/tex]:
[tex]\[ \sqrt{240} = 4 \times \sqrt{15} \][/tex]

Thus, the simplified form of [tex]\(\sqrt{240}\)[/tex] is:
[tex]\[ \boxed{4 \sqrt{15}} \][/tex]

Given options:
1. [tex]\(4 \sqrt{15}\)[/tex]
2. [tex]\(4 + \sqrt{15}\)[/tex]
3. [tex]\(16 \sqrt{15}\)[/tex]
4. [tex]\(16 + \sqrt{15}\)[/tex]

The correct option is [tex]\(4 \sqrt{15}\)[/tex].

Verifying numerically:
If we calculate [tex]\(4 \sqrt{15}\)[/tex]:

1. [tex]\(\sqrt{15} \approx 3.872\)[/tex]
2. [tex]\(4 \times 3.872 \approx 15.491933384829668\)[/tex]

So, [tex]\(\sqrt{240} \approx 15.491933384829668\)[/tex] which confirms our simplified form [tex]\(4 \sqrt{15}\)[/tex]. Therefore, the correct simplified form is:
[tex]\[ \boxed{4 \sqrt{15}} \][/tex]