Use a graphing calculator to graph the following functions:

[tex]\[ y_1 = 2x \][/tex]
[tex]\[ y_2 = 2x^2 \][/tex]
[tex]\[ y_3 = 2^x \][/tex]

1. After approximately what [tex]\( y \)[/tex]-value does the exponential function surpass the linear function?
[tex]\[
\boxed{4}
\][/tex]

2. After approximately what [tex]\( y \)[/tex]-value does the exponential function surpass the quadratic function?
[tex]\[
\boxed{80}
\][/tex]

3. Which function grows the fastest?

\begin{tabular}{l}
\hline
\\
A. The linear function \\
B. The quadratic function \\
C. The exponential function \\
\hline
\end{tabular}



Answer :

To address the given question, let's carefully examine the growth of three functions: [tex]\( y_1 = 2x \)[/tex], [tex]\( y_2 = 2x^2 \)[/tex], and [tex]\( y_3 = 2^x \)[/tex]. Our aim is to determine the [tex]\( y \)[/tex]-value at which the exponential function [tex]\( y_3 \)[/tex] surpasses the linear function [tex]\( y_1 \)[/tex] and the quadratic function [tex]\( y_2 \)[/tex], and to identify which of these functions grows the fastest.

### Comparison with the Linear Function [tex]\( y_1 = 2x \)[/tex]

First, we compare the exponential function [tex]\( y_3 = 2^x \)[/tex] with the linear function [tex]\( y_1 = 2x \)[/tex].

- At [tex]\( x = 0 \)[/tex]:
[tex]\[ y_1 = 2 \cdot 0 = 0 \quad \text{and} \quad y_3 = 2^0 = 1 \][/tex]
Here, [tex]\( y_3 = 1 \)[/tex] when [tex]\( y_1 = 0 \)[/tex].

- Increase [tex]\( x \)[/tex] incrementally, we reach [tex]\( x = 1 \)[/tex]:
[tex]\[ y_1 = 2 \cdot 1 = 2 \quad \text{and} \quad y_3 = 2^1 = 2 \][/tex]
Here, [tex]\( y_3 = 2 \)[/tex], matching [tex]\( y_1 \)[/tex].

Continuing this process, the exponential function starts growing faster. The exponential function [tex]\( y_3 \)[/tex] surpasses the linear function [tex]\( y_1 \)[/tex] immediately after this point. Therefore, the [tex]\( y \)[/tex]-value at which [tex]\( y_3 \)[/tex] surpasses [tex]\( y_1 \)[/tex] as we increase [tex]\( x \)[/tex] is:
[tex]\[ \boxed{1} \][/tex]

### Comparison with the Quadratic Function [tex]\( y_2 = 2x^2 \)[/tex]

Next, we compare the exponential function [tex]\( y_3 = 2^x \)[/tex] with the quadratic function [tex]\( y_2 = 2x^2 \)[/tex].

- At [tex]\( x = 0 \)[/tex]:
[tex]\[ y_2 = 2 \cdot 0^2 = 0 \quad \text{and} \quad y_3 = 2^0 = 1 \][/tex]
Here, [tex]\( y_3 = 1 \)[/tex] when [tex]\( y_2 = 0 \)[/tex].

- Increase [tex]\( x \)[/tex] incrementally, we reach [tex]\( x = 1 \)[/tex]:
[tex]\[ y_2 = 2 \cdot 1^2 = 2 \quad \text{and} \quad y_3 = 2^1 = 2 \][/tex]
Here, [tex]\( y_3 = 2 \)[/tex], matching [tex]\( y_2 \)[/tex].

As the values of [tex]\( x \)[/tex] increase further, the exponential function [tex]\( y_3 \)[/tex] starts to surpass the quadratic function [tex]\( y_2 \)[/tex]. Therefore, the [tex]\( y \)[/tex]-value at which [tex]\( y_3 \)[/tex] surpasses [tex]\( y_2 \)[/tex] immediately after this point is:
[tex]\[ \boxed{1} \][/tex]

### Identifying the Fastest Growing Function

Among the three functions [tex]\( y_1 = 2x \)[/tex], [tex]\( y_2 = 2x^2 \)[/tex], and [tex]\( y_3 = 2^x \)[/tex], the exponential function grows the fastest. This is because exponential growth increases more rapidly than both linear and quadratic growth as [tex]\( x \)[/tex] increases.

Thus, the function that grows the fastest is:
[tex]\[ \boxed{\text{the exponential function}} \][/tex]

In summary:

- The exponential function [tex]\( y_3 \)[/tex] surpasses the linear function [tex]\( y_1 \)[/tex] at [tex]\( y = 1 \)[/tex].
- The exponential function [tex]\( y_3 \)[/tex] surpasses the quadratic function [tex]\( y_2 \)[/tex] at [tex]\( y = 1 \)[/tex].
- The exponential function grows the fastest.