Which choice is equivalent to the expression below?

[tex]\[ \sqrt{-64} \][/tex]

A. [tex]\( 8i \)[/tex]

B. -8

C. [tex]\( 8 + i \)[/tex]

D. [tex]\( 64i \)[/tex]

E. -64



Answer :

To determine which choice is equivalent to the expression [tex]\(\sqrt{-64}\)[/tex], let's break down the computation step by step.

1. Recall that the square root of a negative number involves the imaginary unit [tex]\(i\)[/tex], where [tex]\(i = \sqrt{-1}\)[/tex].

2. The expression [tex]\(\sqrt{-64}\)[/tex] can be expressed in terms of [tex]\(i\)[/tex]. Specifically, [tex]\(\sqrt{-64} = \sqrt{64 \cdot (-1)}\)[/tex].

3. We can separate the square root of the product into the product of the square roots:
[tex]\[ \sqrt{-64} = \sqrt{64} \cdot \sqrt{-1} \][/tex]

4. We know that [tex]\(\sqrt{64} = 8\)[/tex] because 8 multiplied by itself gives 64.

5. We recognize that [tex]\(\sqrt{-1} = i\)[/tex].

6. Combining these results, we get:
[tex]\[ \sqrt{-64} = 8 \cdot i = 8i \][/tex]

Thus, the correct choice equivalent to the expression [tex]\(\sqrt{-64}\)[/tex] is:

A. [tex]\(8i\)[/tex]