Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]

---

Calculate the value of [tex]\( v \)[/tex] using the given values.

[tex]\[
\begin{array}{l}
v = u + a t \\
u = 2 \quad a = -5 \quad t = \frac{1}{2}
\end{array}
\][/tex]

Work out the value of [tex]\( v \)[/tex].



Answer :

To find the value of [tex]\( v \)[/tex] given the equation [tex]\( v = u + at \)[/tex], and the values [tex]\( u = 2 \)[/tex], [tex]\( a = -5 \)[/tex], and [tex]\( t = \frac{1}{2} \)[/tex], follow these steps:

1. Substitute the given values into the equation:
[tex]\[ v = u + at \][/tex]
Replacing [tex]\( u \)[/tex] with 2, [tex]\( a \)[/tex] with -5, and [tex]\( t \)[/tex] with [tex]\(\frac{1}{2}\)[/tex], we get:
[tex]\[ v = 2 + (-5) \left( \frac{1}{2} \right) \][/tex]

2. Calculate the product inside the parentheses:
[tex]\[ -5 \left( \frac{1}{2} \right) = -\frac{5}{2} \][/tex]
This simplifies to:
[tex]\[ -\frac{5}{2} = -2.5 \][/tex]

3. Add the result to [tex]\( u \)[/tex]:
[tex]\[ v = 2 + (-2.5) \][/tex]

4. Perform the addition:
[tex]\[ 2 + (-2.5) = 2 - 2.5 = -0.5 \][/tex]

Thus, the value of [tex]\( v \)[/tex] is:
[tex]\[ v = -0.5 \][/tex]

Other Questions