Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]



Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
7. Number of integral values of [tex]\( x \)[/tex] satisfying [tex]\(\sqrt{4x-4}\ \textless \ \sqrt{x}-1+3\)[/tex] is:
(a) 7
(b) 8
(c) 9
(d) 10
-----

Response:
7. The number of integral values of [tex]\( x \)[/tex] satisfying [tex]\(\sqrt{4x-4}\ \textless \ \sqrt{x}-1+3\)[/tex] is:
(a) 7
(b) 8
(c) 9
(d) 10



Answer :

To solve the given inequality [tex]\(\sqrt{4x - 4} < \sqrt{x} - 1 + 3\)[/tex], let's follow these steps carefully:

1. Simplify the inequality:

The inequality can be rewritten as:
[tex]\[ \sqrt{4x - 4} < \sqrt{x} + 2 \][/tex]

2. Square both sides to eliminate the square roots:

However, before squaring both sides, it's important to determine the conditions necessary for the inequality to hold. Both sides of the inequality must be non-negative (since we are dealing with square roots). Therefore:
[tex]\[ 4x - 4 \geq 0 \implies x \geq 1 \][/tex]
Similarly,
[tex]\[ \sqrt{x} + 2 \geq 0 \implies x \geq 0 \][/tex]
Since [tex]\(x\)[/tex] must satisfy both conditions, we have [tex]\(x \geq 1\)[/tex].

Now, square both sides of the simplified inequality:
[tex]\[ (\sqrt{4x - 4})^2 < (\sqrt{x} + 2)^2 \][/tex]
This yields:
[tex]\[ 4x - 4 < x + 4\sqrt{x} + 4 \][/tex]

3. Simplify the resulting inequality:

[tex]\[ 4x - 4 < x + 4\sqrt{x} + 4 \][/tex]
Isolate all terms involving [tex]\(x\)[/tex] on one side:
[tex]\[ 4x - x - 8 < 4\sqrt{x} \][/tex]
[tex]\[ 3x - 8 < 4\sqrt{x} \][/tex]

4. Square both sides again to eliminate the square root:

[tex]\[ (3x - 8)^2 < (4\sqrt{x})^2 \][/tex]
This simplifies to:
[tex]\[ 9x^2 - 48x + 64 < 16x \][/tex]
Bring all terms to one side to form a quadratic inequality:
[tex]\[ 9x^2 - 64x + 64 < 0 \][/tex]

5. Solve the quadratic inequality:

We need to find the roots of the quadratic equation [tex]\(9x^2 - 64x + 64 = 0\)[/tex] and determine the intervals where the quadratic expression is less than zero.

Using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
[tex]\[ x = \frac{64 \pm \sqrt{64^2 - 4 \cdot 9 \cdot 64}}{2 \cdot 9} \][/tex]
[tex]\[ x = \frac{64 \pm \sqrt{4096 - 2304}}{18} \][/tex]
[tex]\[ x = \frac{64 \pm \sqrt{1792}}{18} \][/tex]
[tex]\[ x = \frac{64 \pm 8\sqrt{28}}{18} \][/tex]
[tex]\[ x = \frac{32 \pm 4\sqrt{7}}{9} \][/tex]

The roots of the quadratic equation are:
[tex]\[ x_1 = \frac{32 - 4\sqrt{7}}{9}, \quad x_2 = \frac{32 + 4\sqrt{7}}{9} \][/tex]

Evaluate these approximate values:
[tex]\[ x_1 \approx 1.37, \quad x_2 \approx 5.23 \][/tex]

The quadratic inequality [tex]\(9x^2 - 64x + 64 < 0\)[/tex] holds between the roots [tex]\(x_1\)[/tex] and [tex]\(x_2\)[/tex].

6. Find the integral values in the interval:

The interval where the inequality holds true is approximately:
[tex]\[ 1.37 < x < 5.23 \][/tex]
The integer values in this interval are [tex]\(x = 2, 3, 4, 5\)[/tex].

Therefore, the number of integral values of [tex]\(x\)[/tex] that satisfy the inequality is:
[tex]\[ \boxed{4} \][/tex]