The [tex]$(n+1)$[/tex]th term of a sequence is given by the expression [tex]$\frac{(n+3)(n+4)}{2}$[/tex]. Write an expression in terms of [tex]$n$[/tex] for the [tex]$(n+1)$[/tex]th term.



Answer :

Certainly! Let's derive the expression for the [tex]\((n+1)\)[/tex]-th term given that the [tex]\(n\)[/tex]-th term of the sequence is represented by [tex]\(\frac{(n+3)(n+4)}{2}\)[/tex].

1. Identify the original expression: The [tex]\(n\)[/tex]-th term of the sequence is given by:
[tex]\[ T_n = \frac{(n+3)(n+4)}{2} \][/tex]

2. Substitute [tex]\(n+1\)[/tex] instead of [tex]\(n\)[/tex]: To find the [tex]\((n+1)\)[/tex]-th term, we need to substitute [tex]\(n+1\)[/tex] for [tex]\(n\)[/tex] in the original expression. Let's perform the substitution:
[tex]\[ T_{n+1} = \frac{((n+1) + 3)((n+1) + 4)}{2} \][/tex]

3. Simplify the substituted expression: Next, we simplify the terms within the parentheses.
- [tex]\((n+1) + 3\)[/tex] simplifies to [tex]\(n + 4\)[/tex].
- [tex]\((n+1) + 4\)[/tex] simplifies to [tex]\(n + 5\)[/tex].

Therefore, the expression transforms to:
[tex]\[ T_{n+1} = \frac{(n+4)(n+5)}{2} \][/tex]

4. Result: The simplified expression for the [tex]\((n+1)\)[/tex]-th term in terms of [tex]\(n\)[/tex] is:
[tex]\[ T_{n+1} = \frac{(n+4)(n+5)}{2} \][/tex]

So, the expression for the [tex]\((n+1)\)[/tex]-th term of the sequence, given that the [tex]\(n\)[/tex]-th term is [tex]\(\frac{(n+3)(n+4)}{2}\)[/tex], is [tex]\(\frac{(n+4)(n+5)}{2}\)[/tex].