To evaluate the expression [tex]\(1 - 3^{-1}\)[/tex], let's break it down step by step.
1. First, we need to find the value of [tex]\(3^{-1}\)[/tex]. The notation [tex]\(3^{-1}\)[/tex] means the reciprocal of 3. Mathematically, it is expressed as:
[tex]\[
3^{-1} = \frac{1}{3}
\][/tex]
2. Next, we calculate [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[
\frac{1}{3} \approx 0.3333333333333333
\][/tex]
3. Now, we proceed to the next part of the expression: [tex]\(1 - 3^{-1}\)[/tex].
Substituting the value of [tex]\(\frac{1}{3}\)[/tex], we get:
[tex]\[
1 - \frac{1}{3}
\][/tex]
4. Perform the subtraction:
[tex]\[
1 - 0.3333333333333333 \approx 0.6666666666666667
\][/tex]
Thus, the evaluated result of [tex]\(1 - 3^{-1}\)[/tex] is approximately [tex]\(0.6666666666666667\)[/tex].
The intermediate result for [tex]\(3^{-1}\)[/tex] is [tex]\(0.3333333333333333\)[/tex] and the final result for [tex]\(1 - 3^{-1}\)[/tex] is [tex]\(0.6666666666666667\)[/tex].