Answered

\begin{tabular}{|c|c|c|c|c|}
\hline
\begin{tabular}{c}
Number of \\
Workers
\end{tabular} & Output & Total Cost & Variable Cost & Fixed Cost \\
\hline 5 & 100 & [tex]$\$[/tex] 130[tex]$ & $[/tex]\[tex]$ 80$[/tex] & [tex]$\$[/tex] 50[tex]$ \\
\hline 10 & 180 & $[/tex]\[tex]$ 210$[/tex] & [tex]$\$[/tex] 160[tex]$ & $[/tex]\[tex]$ 50$[/tex] \\
\hline 15 & 240 & [tex]$\$[/tex] 290[tex]$ & $[/tex]\[tex]$ 240$[/tex] & [tex]$\$[/tex] 50[tex]$ \\
\hline 20 & 280 & $[/tex]\[tex]$ 370$[/tex] & [tex]$\$[/tex] 320[tex]$ & $[/tex]\[tex]$ 50$[/tex] \\
\hline
\end{tabular}

If the cost of labor is the only variable cost that the firm faces, what is the cost incurred by the business for each additional unit of labor?

A. [tex]$\$[/tex] 16[tex]$

B. $[/tex]\[tex]$ 80$[/tex]

C. [tex]$\$[/tex] 50[tex]$

D. $[/tex]\[tex]$ 10$[/tex]



Answer :

To determine the cost incurred by the business for each additional unit of labor, we need to examine the change in total cost as the number of workers increases, considering the portion of the total cost that changes with labor, which is the variable cost. Here’s the step-by-step process:

1. Identify the number of workers at each step and the corresponding total costs:
[tex]\[ \begin{array}{|c|c|} \hline \text{Number of Workers} & \text{Total Cost (\$)} \\ \hline 5 & 130 \\ \hline 10 & 210 \\ \hline 15 & 290 \\ \hline 20 & 370 \\ \hline \end{array} \][/tex]

2. Calculate the change in total cost for each interval:
[tex]\[ \begin{array}{ll} \Delta \text{Total Cost from 5 to 10 workers} &= 210 - 130 = 80 \\ \Delta \text{Total Cost from 10 to 15 workers} &= 290 - 210 = 80 \\ \Delta \text{Total Cost from 15 to 20 workers} &= 370 - 290 = 80 \\ \end{array} \][/tex]
Each increase of 5 workers results in an \[tex]$80 increase in total cost. 3. Determine the cost per additional worker: Since the interval increase in the number of workers is 5 for each interval, we divide the change in total cost by the number of additional workers to find the cost per worker: \[ \text{Variable Cost per Worker} = \frac{80}{5} = 16 \] 4. Conclusion: The cost incurred by the business for each additional unit of labor is \(\$[/tex]16\).

Therefore, the correct answer is:
[tex]\[ \$ 16 \][/tex]