Triangle [tex]\( U V W \)[/tex] has vertices at [tex]\( U(-2,0), V(-3,1), W(-3,3) \)[/tex]. Determine the vertices of the image [tex]\( U' V' W' \)[/tex] if the preimage is rotated [tex]\( 90^{\circ} \)[/tex] counterclockwise.

A. [tex]\( U'(0,-2), V'(-1,-3), W'(-3,-3) \)[/tex]
B. [tex]\( U'(0,-2), V'(1,-3), W'(3,-3) \)[/tex]
C. [tex]\( U'(2,0), V'(3,-1), W'(3,-3) \)[/tex]
D. [tex]\( U'(-2,0), V'(-3,0), W'(3,-3) \)[/tex]



Answer :

To determine the vertices of the image [tex]\( U'V'W' \)[/tex] after rotating the preimage [tex]\( UVW \)[/tex] 90 degrees counterclockwise, follow these steps:

1. Understand the rotation rule:
For a point [tex]\((x, y)\)[/tex], a 90 degrees counterclockwise rotation transforms it to [tex]\((-y, x)\)[/tex].

2. Apply the rotation rule to each vertex:

- For [tex]\( U(-2, 0) \)[/tex]:
[tex]\[ (x, y) = (-2, 0) \implies (-y, x) = (0, -2) \][/tex]
So, [tex]\( U' \)[/tex] is [tex]\( (0, -2) \)[/tex].

- For [tex]\( V(-3, 1) \)[/tex]:
[tex]\[ (x, y) = (-3, 1) \implies (-y, x) = (-1, -3) \][/tex]
So, [tex]\( V' \)[/tex] is [tex]\( (-1, -3) \)[/tex].

- For [tex]\( W(-3, 3) \)[/tex]:
[tex]\[ (x, y) = (-3, 3) \implies (-y, x) = (-3, -3) \][/tex]
So, [tex]\( W' \)[/tex] is [tex]\( (-3, -3) \)[/tex].

3. Compile the new vertices:
The vertices of the image [tex]\( U'V'W' \)[/tex] after the 90 degrees counterclockwise rotation are:
[tex]\[ U'(0, -2), V'(-1, -3), W'(-3, -3) \][/tex]

Hence, the correct answer is:
[tex]\[ U^{\prime}(0,-2), V^{\prime}(-1,-3), W^{\prime}(-3,-3) \][/tex]