Answer :
To determine how many moles of [tex]\( H_2O \)[/tex] will be produced from 6 moles of [tex]\( O_2 \)[/tex] in the reaction [tex]\( 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g) \)[/tex], follow these steps:
1. Understand the Stoichiometry of the Reaction:
The balanced chemical equation shows the relationship between the reactants and products:
[tex]\[ 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g) \][/tex]
This equation tells us that 1 mole of [tex]\( O_2 \)[/tex] reacts with 2 moles of [tex]\( H_2 \)[/tex] to produce 2 moles of [tex]\( H_2O \)[/tex].
2. Identify the Given Information:
We are given 6 moles of [tex]\( O_2 \)[/tex].
3. Determine the Moles of [tex]\( H_2O \)[/tex] Produced:
According to the stoichiometry of the reaction:
- 1 mole of [tex]\( O_2 \)[/tex] produces 2 moles of [tex]\( H_2O \)[/tex].
Therefore, if we have 6 moles of [tex]\( O_2 \)[/tex]:
[tex]\[ \text{Moles of } H_2O = 2 \, (\text{moles of } H_2O \, \text{per mole of } O_2) \times 6 \, (\text{moles of } O_2) \][/tex]
[tex]\[ \text{Moles of } H_2O = 12 \, \text{moles} \][/tex]
So, 12 moles of [tex]\( H_2O \)[/tex] will be produced from 6 moles of [tex]\( O_2 \)[/tex].
1. Understand the Stoichiometry of the Reaction:
The balanced chemical equation shows the relationship between the reactants and products:
[tex]\[ 2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g) \][/tex]
This equation tells us that 1 mole of [tex]\( O_2 \)[/tex] reacts with 2 moles of [tex]\( H_2 \)[/tex] to produce 2 moles of [tex]\( H_2O \)[/tex].
2. Identify the Given Information:
We are given 6 moles of [tex]\( O_2 \)[/tex].
3. Determine the Moles of [tex]\( H_2O \)[/tex] Produced:
According to the stoichiometry of the reaction:
- 1 mole of [tex]\( O_2 \)[/tex] produces 2 moles of [tex]\( H_2O \)[/tex].
Therefore, if we have 6 moles of [tex]\( O_2 \)[/tex]:
[tex]\[ \text{Moles of } H_2O = 2 \, (\text{moles of } H_2O \, \text{per mole of } O_2) \times 6 \, (\text{moles of } O_2) \][/tex]
[tex]\[ \text{Moles of } H_2O = 12 \, \text{moles} \][/tex]
So, 12 moles of [tex]\( H_2O \)[/tex] will be produced from 6 moles of [tex]\( O_2 \)[/tex].