Martin wants to use coordinate geometry to prove that the opposite sides of a rectangle are congruent. He places parallelogram [tex]\( A B C D \)[/tex] in the coordinate plane so that [tex]\( A \)[/tex] is [tex]\( (0,0) \)[/tex], [tex]\( B \)[/tex] is [tex]\( (a, 0) \)[/tex], [tex]\( C \)[/tex] is [tex]\( (a, b) \)[/tex], and [tex]\( D \)[/tex] is [tex]\( (0, b) \)[/tex].

What formula can he use to determine the distance from point [tex]\( D \)[/tex] to point [tex]\( A \)[/tex]?

A. [tex]\((0-0)^2+(b-0)^2=b^2\)[/tex]

B. [tex]\(\sqrt{(0-0)^2+(b-0)^2}=\sqrt{b^2}=b\)[/tex]

C. [tex]\((a-a)^2+(b-0)^2=b^2\)[/tex]

D. [tex]\(\sqrt{(a-a)^2+(b-0)^2}=\sqrt{b^2}=b\)[/tex]



Answer :

To determine the distance from point [tex]\(D\)[/tex] at coordinates [tex]\( (0, b) \)[/tex] to point [tex]\(A\)[/tex] at coordinates [tex]\( (0,0) \)[/tex], Martin can use the distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]. The distance formula is given by:

[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

In this case:
- The coordinates of [tex]\(A\)[/tex] are [tex]\( (0, 0) \)[/tex]
- The coordinates of [tex]\(D\)[/tex] are [tex]\( (0, b) \)[/tex]

Substituting these coordinates into the distance formula:

[tex]\[ d = \sqrt{(0 - 0)^2 + (b - 0)^2} \][/tex]

This simplifies to:

[tex]\[ d = \sqrt{0^2 + b^2} = \sqrt{b^2} = b \][/tex]

So, the correct choice is:

[tex]\[ \sqrt{(0 - 0)^2 + (b - 0)^2} = \sqrt{b^2} = b \][/tex]

Thus, the correct answer is:

B. [tex]\(\sqrt{(0 - 0)^2 + (b - 0)^2} = \sqrt{b^2} = b\)[/tex]