To determine the distance from point [tex]\(D\)[/tex] at coordinates [tex]\( (0, b) \)[/tex] to point [tex]\(A\)[/tex] at coordinates [tex]\( (0,0) \)[/tex], Martin can use the distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]. The distance formula is given by:
[tex]\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\][/tex]
In this case:
- The coordinates of [tex]\(A\)[/tex] are [tex]\( (0, 0) \)[/tex]
- The coordinates of [tex]\(D\)[/tex] are [tex]\( (0, b) \)[/tex]
Substituting these coordinates into the distance formula:
[tex]\[
d = \sqrt{(0 - 0)^2 + (b - 0)^2}
\][/tex]
This simplifies to:
[tex]\[
d = \sqrt{0^2 + b^2} = \sqrt{b^2} = b
\][/tex]
So, the correct choice is:
[tex]\[
\sqrt{(0 - 0)^2 + (b - 0)^2} = \sqrt{b^2} = b
\][/tex]
Thus, the correct answer is:
B. [tex]\(\sqrt{(0 - 0)^2 + (b - 0)^2} = \sqrt{b^2} = b\)[/tex]