Select the correct answer.

Which function defines [tex]$(g \cdot f)(x)$[/tex]?
[tex]\[
\begin{array}{l}
f(x)=\log (5 x) \\
g(x)=5 x+4
\end{array}
\][/tex]

A. [tex]$(g \cdot f)(x)=5 x+4+\log (5 x)$[/tex]

B. [tex]$(g \cdot f)(x)=5 x \log (5 x)+4 \log (5 x)$[/tex]

C. [tex][tex]$(g \cdot f)(x)=5 x \log (5 x)+4$[/tex][/tex]

D. [tex]$(g \cdot f)(x)=5 x-4-\log (5 x)$[/tex]



Answer :

To find the composition of the functions [tex]\( (g \cdot f)(x) \)[/tex], we need to evaluate [tex]\( g(f(x)) \)[/tex]. Let's go through the steps to do this.

1. Determine [tex]\( f(x) \)[/tex]:
Given:
[tex]\[ f(x) = \log(5x) \][/tex]

2. Substitute [tex]\( f(x) \)[/tex] into [tex]\( g \)[/tex]:
To find [tex]\( g(f(x)) \)[/tex], substitute [tex]\( f(x) \)[/tex] into the function [tex]\( g \)[/tex]. Recall that:
[tex]\[ g(x) = 5x + 4 \][/tex]

So, replace [tex]\( x \)[/tex] in [tex]\( g(x) \)[/tex] with [tex]\( f(x) \)[/tex]:
[tex]\[ g(f(x)) = g(\log(5x)) \][/tex]

3. Evaluate [tex]\( g(f(x)) \)[/tex]:
Substitute [tex]\( \log(5x) \)[/tex] into [tex]\( g(x) \)[/tex]:
[tex]\[ g(\log(5x)) = 5(\log(5x)) + 4 \][/tex]

4. Simplify the expression:
Putting it all together, we get:
[tex]\[ (g \cdot f)(x) = 5 \log(5x) + 4 \][/tex]

Now, let's compare this result with the provided options:

- Option A:
[tex]\[ 5x + 4 + \log(5x) \][/tex]
This does not match our result.

- Option B:
[tex]\[ 5x \log(5x) + 4 \log(5x) \][/tex]
This does not match our result.

- Option C:
[tex]\[ 5 \log(5x) + 4 \][/tex]
This is exactly our result.

- Option D:
[tex]\[ 5x - 4 - \log(5x) \][/tex]
This does not match our result.

Therefore, the correct answer is:
[tex]\[ \boxed{C} \][/tex]