Answer :
To determine the mass of ammonium perchlorate ([tex]\(NH_4ClO_4\)[/tex]) required for every kilogram of aluminum (Al) in the fuel mixture, follow this step-by-step process:
1. Determine the molar masses of aluminum and ammonium perchlorate:
- Molar mass of Al (Aluminum): 26.98 g/mol
- Molar mass of [tex]\(NH_4ClO_4\)[/tex] (Ammonium Perchlorate): 117.49 g/mol
2. Convert the given mass of aluminum to moles:
- Given mass of Al = 1000 grams (1 kilogram)
- Moles of Al = mass of Al / molar mass of Al
[tex]\[ \text{Moles of Al} = \frac{1000 \text{ g}}{26.98 \text{ g/mol}} \approx 37.064 \text{ moles} \][/tex]
3. Determine the molar ratio from the balanced chemical equation:
From the balanced equation:
[tex]\[ 3 \text{ Al} + 3 \text{ NH}_4\text{ClO}_4 \longrightarrow \text{Products} \][/tex]
The molar ratio of Al to [tex]\(NH_4ClO_4\)[/tex] is 1:1.
4. Calculate the moles of [tex]\(NH_4ClO_4\)[/tex] required:
Given the 1:1 molar ratio:
[tex]\[ \text{Moles of } NH_4ClO_4 = \text{Moles of Al} \approx 37.064 \text{ moles} \][/tex]
5. Convert moles of [tex]\(NH_4ClO_4\)[/tex] to mass:
- Mass of [tex]\(NH_4ClO_4\)[/tex] = moles of [tex]\(NH_4ClO_4\)[/tex] [tex]\(\times\)[/tex] molar mass of [tex]\(NH_4ClO_4\)[/tex]
[tex]\[ \text{Mass of } NH_4ClO_4 = 37.064 \text{ moles} \times 117.49 \text{ g/mol} \approx 4354.707 \text{ grams} \][/tex]
So, for every kilogram of aluminum, you should use approximately 4354.707 grams (or approximately 4.354 kilograms) of ammonium perchlorate in the fuel mixture.
1. Determine the molar masses of aluminum and ammonium perchlorate:
- Molar mass of Al (Aluminum): 26.98 g/mol
- Molar mass of [tex]\(NH_4ClO_4\)[/tex] (Ammonium Perchlorate): 117.49 g/mol
2. Convert the given mass of aluminum to moles:
- Given mass of Al = 1000 grams (1 kilogram)
- Moles of Al = mass of Al / molar mass of Al
[tex]\[ \text{Moles of Al} = \frac{1000 \text{ g}}{26.98 \text{ g/mol}} \approx 37.064 \text{ moles} \][/tex]
3. Determine the molar ratio from the balanced chemical equation:
From the balanced equation:
[tex]\[ 3 \text{ Al} + 3 \text{ NH}_4\text{ClO}_4 \longrightarrow \text{Products} \][/tex]
The molar ratio of Al to [tex]\(NH_4ClO_4\)[/tex] is 1:1.
4. Calculate the moles of [tex]\(NH_4ClO_4\)[/tex] required:
Given the 1:1 molar ratio:
[tex]\[ \text{Moles of } NH_4ClO_4 = \text{Moles of Al} \approx 37.064 \text{ moles} \][/tex]
5. Convert moles of [tex]\(NH_4ClO_4\)[/tex] to mass:
- Mass of [tex]\(NH_4ClO_4\)[/tex] = moles of [tex]\(NH_4ClO_4\)[/tex] [tex]\(\times\)[/tex] molar mass of [tex]\(NH_4ClO_4\)[/tex]
[tex]\[ \text{Mass of } NH_4ClO_4 = 37.064 \text{ moles} \times 117.49 \text{ g/mol} \approx 4354.707 \text{ grams} \][/tex]
So, for every kilogram of aluminum, you should use approximately 4354.707 grams (or approximately 4.354 kilograms) of ammonium perchlorate in the fuel mixture.