Answer :
To solve the inequality [tex]\(|6x - 2| - 6 < 10\)[/tex], we can follow these steps:
1. Simplify the Inequality:
We start with the inequality:
[tex]\[ |6x - 2| - 6 < 10 \][/tex]
Add 6 to both sides to isolate the absolute value expression:
[tex]\[ |6x - 2| < 16 \][/tex]
2. Interpret the Absolute Value Inequality:
The inequality [tex]\(|6x - 2| < 16\)[/tex] means that the expression inside the absolute value lies within the range [tex]\(-16\)[/tex] to [tex]\(16\)[/tex]. Therefore, we can rewrite this as:
[tex]\[ -16 < 6x - 2 < 16 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
We now handle the combined inequality by splitting it into two separate inequalities and solving them:
- First, solve [tex]\(-16 < 6x - 2\)[/tex]:
[tex]\[ -16 < 6x - 2 \][/tex]
Add 2 to both sides:
[tex]\[ -14 < 6x \][/tex]
Divide by 6:
[tex]\[ -\frac{14}{6} < x \][/tex]
Simplify the fraction:
[tex]\[ -\frac{7}{3} < x \][/tex]
- Next, solve [tex]\(6x - 2 < 16\)[/tex]:
[tex]\[ 6x - 2 < 16 \][/tex]
Add 2 to both sides:
[tex]\[ 6x < 18 \][/tex]
Divide by 6:
[tex]\[ x < 3 \][/tex]
4. Combine the Solutions:
Combining the results from both parts, we get:
[tex]\[ -\frac{7}{3} < x < 3 \][/tex]
Hence, the solution to the inequality [tex]\(|6x - 2| - 6 < 10\)[/tex] is:
[tex]\[ -\frac{7}{3} < x < 3 \][/tex]
1. Simplify the Inequality:
We start with the inequality:
[tex]\[ |6x - 2| - 6 < 10 \][/tex]
Add 6 to both sides to isolate the absolute value expression:
[tex]\[ |6x - 2| < 16 \][/tex]
2. Interpret the Absolute Value Inequality:
The inequality [tex]\(|6x - 2| < 16\)[/tex] means that the expression inside the absolute value lies within the range [tex]\(-16\)[/tex] to [tex]\(16\)[/tex]. Therefore, we can rewrite this as:
[tex]\[ -16 < 6x - 2 < 16 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
We now handle the combined inequality by splitting it into two separate inequalities and solving them:
- First, solve [tex]\(-16 < 6x - 2\)[/tex]:
[tex]\[ -16 < 6x - 2 \][/tex]
Add 2 to both sides:
[tex]\[ -14 < 6x \][/tex]
Divide by 6:
[tex]\[ -\frac{14}{6} < x \][/tex]
Simplify the fraction:
[tex]\[ -\frac{7}{3} < x \][/tex]
- Next, solve [tex]\(6x - 2 < 16\)[/tex]:
[tex]\[ 6x - 2 < 16 \][/tex]
Add 2 to both sides:
[tex]\[ 6x < 18 \][/tex]
Divide by 6:
[tex]\[ x < 3 \][/tex]
4. Combine the Solutions:
Combining the results from both parts, we get:
[tex]\[ -\frac{7}{3} < x < 3 \][/tex]
Hence, the solution to the inequality [tex]\(|6x - 2| - 6 < 10\)[/tex] is:
[tex]\[ -\frac{7}{3} < x < 3 \][/tex]