Solve the inequality:

[tex]\[ |6x - 2| - 6 \ \textless \ 10 \][/tex]

[tex]\[-[?] \ \textless \ x \ \textless \ \square\][/tex]



Answer :

To solve the inequality [tex]\(|6x - 2| - 6 < 10\)[/tex], we can follow these steps:

1. Simplify the Inequality:

We start with the inequality:
[tex]\[ |6x - 2| - 6 < 10 \][/tex]

Add 6 to both sides to isolate the absolute value expression:
[tex]\[ |6x - 2| < 16 \][/tex]

2. Interpret the Absolute Value Inequality:

The inequality [tex]\(|6x - 2| < 16\)[/tex] means that the expression inside the absolute value lies within the range [tex]\(-16\)[/tex] to [tex]\(16\)[/tex]. Therefore, we can rewrite this as:
[tex]\[ -16 < 6x - 2 < 16 \][/tex]

3. Solve for [tex]\(x\)[/tex]:

We now handle the combined inequality by splitting it into two separate inequalities and solving them:

- First, solve [tex]\(-16 < 6x - 2\)[/tex]:
[tex]\[ -16 < 6x - 2 \][/tex]
Add 2 to both sides:
[tex]\[ -14 < 6x \][/tex]
Divide by 6:
[tex]\[ -\frac{14}{6} < x \][/tex]
Simplify the fraction:
[tex]\[ -\frac{7}{3} < x \][/tex]

- Next, solve [tex]\(6x - 2 < 16\)[/tex]:
[tex]\[ 6x - 2 < 16 \][/tex]
Add 2 to both sides:
[tex]\[ 6x < 18 \][/tex]
Divide by 6:
[tex]\[ x < 3 \][/tex]

4. Combine the Solutions:

Combining the results from both parts, we get:
[tex]\[ -\frac{7}{3} < x < 3 \][/tex]

Hence, the solution to the inequality [tex]\(|6x - 2| - 6 < 10\)[/tex] is:
[tex]\[ -\frac{7}{3} < x < 3 \][/tex]