The cost per ton, [tex]\( y \)[/tex], to build an oil tanker of [tex]\( x \)[/tex] thousand deadweight tons is approximated by

[tex]\[ \overline{C}(x) = \frac{225,000}{x+480} \][/tex]

for [tex]\( x \ \textgreater \ 0 \)[/tex]. Answer parts a through d.

a. Find [tex]\( \overline{C}(25) \)[/tex], [tex]\( \overline{C}(50) \)[/tex], [tex]\( \overline{C}(100) \)[/tex], [tex]\( \overline{C}(200) \)[/tex], [tex]\( \overline{C}(300) \)[/tex], and [tex]\( \overline{C}(400) \)[/tex].

[tex]\[
\begin{array}{ll}
\overline{C}(25) = 445.5 & \overline{C}(50) = 424.5 \\
\overline{C}(100) = 387.9 & \overline{C}(200) = 330.9 \\
\overline{C}(300) = 288.5 & \overline{C}(400) = 255.7
\end{array}
\][/tex]

(Type an integer or decimal rounded to one decimal place as needed.)

b. Find any asymptotes.

The horizontal asymptote is [tex]\( \overline{C} = 0 \)[/tex].

The vertical asymptote is [tex]\( x = -480 \)[/tex].

c. Find any intercepts. Select the correct choice below and fill in any answer boxes within your choice.

A. The [tex]\( x \)[/tex]-intercept is [tex]\(\square\)[/tex]. The [tex]\( y \)[/tex]-intercept or [tex]\( \overline{C}(0) \)[/tex] is [tex]\(\square\)[/tex].

(Type an integer or decimal rounded to one decimal place as needed.)

B. There are no intercepts.



Answer :

Sure, let's explore each part of the question step by step and interpret the results:

### Part a: Calculating [tex]\(\overline{ C }(x)\)[/tex]

To find the cost per ton, [tex]\(\overline{ C }(x)\)[/tex], for specific values of [tex]\( x \)[/tex], we use the formula:
[tex]\[ \overline{ C }(x) = \frac{225,000}{x + 480} \][/tex]

Given values and their computed costs:

- [tex]\(\overline{ C }(25)\)[/tex]:
[tex]\[ \overline{ C }(25) = \frac{225,000}{25 + 480} = 445.5 \][/tex]

- [tex]\(\overline{ C }(50)\)[/tex]:
[tex]\[ \overline{ C }(50) = \frac{225,000}{50 + 480} = 424.5 \][/tex]

- [tex]\(\overline{ C }(100)\)[/tex]:
[tex]\[ \overline{ C }(100) = \frac{225,000}{100 + 480} = 387.9 \][/tex]

- [tex]\(\overline{ C }(200)\)[/tex]:
[tex]\[ \overline{ C }(200) = \frac{225,000}{200 + 480} = 330.9 \][/tex]

- [tex]\(\overline{ C }(300)\)[/tex]:
[tex]\[ \overline{ C }(300) = \frac{225,000}{300 + 480} = 288.5 \][/tex]

- [tex]\(\overline{ C }(400)\)[/tex]:
[tex]\[ \overline{ C }(400) = \frac{225,000}{400 + 480} = 255.7 \][/tex]

Thus, the calculated values are:
[tex]\[ \begin{array}{ll} \overline{ C }(25)=445.5 & \overline{ C }(50)=424.5 \\ \overline{ C }(100)=387.9 & \overline{ C }(200)=330.9 \\ \overline{ C }(300)=288.5 & \overline{ C }(400)=255.7 \\ \end{array} \][/tex]

### Part b: Finding Asymptotes

1. Horizontal Asymptote:
As [tex]\( x \)[/tex] approaches infinity, the value of [tex]\( \overline{ C }(x) \)[/tex] will approach [tex]\( 0 \)[/tex]. Therefore, the horizontal asymptote is:
[tex]\[ \overline{C} = 0 \][/tex]

2. Vertical Asymptote:
The vertical asymptote occurs where the denominator of the function equals zero. Thus:
[tex]\[ x + 480 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = -480 \][/tex]
Hence, the vertical asymptote is:
[tex]\[ x = -480 \][/tex]

### Part c: Finding Intercepts

1. x-Intercept:
To find the x-intercept, set [tex]\( \overline{C}(x) \)[/tex] to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 0 = \frac{225,000}{x + 480} \][/tex]
This equation has no solution for any finite [tex]\( x \)[/tex] because the numerator is non-zero. Thus, there is no [tex]\( x \)[/tex]-intercept.

2. y-Intercept:
To find the y-intercept, evaluate [tex]\( \overline{ C }(0) \)[/tex]:
[tex]\[ \overline{ C }(0) = \frac{225,000}{0 + 480} = 468.8 \][/tex]

Thereby, the intercepts are:
A. The [tex]\( y \)[/tex]-intercept (or [tex]\( \overline{ C }(0) \)[/tex]) is [tex]\( 468.8 \)[/tex]. There is no [tex]\( x \)[/tex]-intercept.

### Summary

- Calculated Values:
[tex]\[ \begin{array}{ll} \overline{ C }(25)=445.5 & \overline{ C }(50)=424.5 \\ \overline{ C }(100)=387.9 & \overline{ C }(200)=330.9 \\ \overline{ C }(300)=288.5 & \overline{ C }(400)=255.7 \end{array} \][/tex]

- Asymptotes:
- Horizontal Asymptote: [tex]\(\overline{C} = 0\)[/tex]
- Vertical Asymptote: [tex]\(x = -480\)[/tex]

- Intercepts:
- [tex]\( y \)[/tex]-intercept: [tex]\( \overline{ C }(0) = 468.8 \)[/tex]
- No [tex]\( x \)[/tex]-Intercept

These findings provide a complete understanding of the behavior of the cost function [tex]\( \overline{ C }(x) \)[/tex].