Answer :
Let's break down the given polynomial terms representing the volume of the chicken coop. Here are the terms we need to consider:
1. [tex]\( 108 c^2 d \)[/tex]
2. [tex]\( -90 c d \)[/tex]
3. [tex]\( -30 c^2 \)[/tex]
4. [tex]\( 216 d^3 \)[/tex]
5. [tex]\( 168 c^3 d \)[/tex]
6. [tex]\( 56 c^3 \)[/tex]
These terms, individually, are part of the polynomial that could represent the volume of the chicken coop. Now, let's identify these terms in the context of a simplified polynomial representation.
The simplified polynomial includes all the original terms provided:
- [tex]\( 108 c^2 d \)[/tex]
- [tex]\( -90 c d \)[/tex]
- [tex]\( -30 c^2 \)[/tex]
- [tex]\( 216 d^3 \)[/tex]
- [tex]\( 168 c^3 d \)[/tex]
- [tex]\( 56 c^3 \)[/tex]
Therefore, all the terms listed in the table appear in the simplified polynomial representing the volume of the chicken coop.
1. [tex]\( 108 c^2 d \)[/tex]
2. [tex]\( -90 c d \)[/tex]
3. [tex]\( -30 c^2 \)[/tex]
4. [tex]\( 216 d^3 \)[/tex]
5. [tex]\( 168 c^3 d \)[/tex]
6. [tex]\( 56 c^3 \)[/tex]
These terms, individually, are part of the polynomial that could represent the volume of the chicken coop. Now, let's identify these terms in the context of a simplified polynomial representation.
The simplified polynomial includes all the original terms provided:
- [tex]\( 108 c^2 d \)[/tex]
- [tex]\( -90 c d \)[/tex]
- [tex]\( -30 c^2 \)[/tex]
- [tex]\( 216 d^3 \)[/tex]
- [tex]\( 168 c^3 d \)[/tex]
- [tex]\( 56 c^3 \)[/tex]
Therefore, all the terms listed in the table appear in the simplified polynomial representing the volume of the chicken coop.