Answer :
Let's match each standard form expression to its corresponding factored form step by step:
1. Expression: [tex]\( 15x^7 y^2 + 6xy \)[/tex]
Factored form:
Let's break down the terms of the expression and look for common factors.
Both terms [tex]\( 15x^7y^2 \)[/tex] and [tex]\( 6xy \)[/tex] have [tex]\( xy \)[/tex] as a common factor.
Therefore, [tex]\( 15x^7y^2 + 6xy = xy(15x^6y + 6) \)[/tex].
2. Expression: [tex]\( 15x^7 + 10y^2 \)[/tex]
Factored form:
Let's break down the terms of the expression and look for common factors.
Both terms [tex]\( 15x^7 \)[/tex] and [tex]\( 10y^2 \)[/tex] have [tex]\( 5 \)[/tex] as a common factor.
Therefore, [tex]\( 15x^7 + 10y^2 = 5(3x^7 + 2y^2) \)[/tex].
3. Expression: [tex]\( 15x^7y^2 + 3x \)[/tex]
Factored form:
Let's break down the terms of the expression and look for common factors.
Both terms [tex]\( 15x^7y^2 \)[/tex] and [tex]\( 3x \)[/tex] have [tex]\( 3x \)[/tex] as a common factor.
Therefore, [tex]\( 15x^7y^2 + 3x = 3x(5x^6y^2 + 1) \)[/tex].
4. Expression: [tex]\( 15x^7y^2 + 4x^3 \)[/tex]
Factored form:
Let's break down the terms of the expression and look for common factors.
Both terms [tex]\( 15x^7y^2 \)[/tex] and [tex]\( 4x^3 \)[/tex] have [tex]\( x^3 \)[/tex] as a common factor.
Therefore, [tex]\( 15x^7y^2 + 4x^3 = x^3(15x^4y^2 + 4) \)[/tex].
Now, we can match each standard form expression with its factored form:
- [tex]\( 15x^7 y^2 + 6xy \)[/tex] matches with [tex]\( 3xy(5x^6y + 2) \)[/tex]
- [tex]\( 15x^7 + 10y^2 \)[/tex] matches with [tex]\( 5(3x^7 + 2y^2) \)[/tex]
- [tex]\( 15x^7 y^2 + 3x \)[/tex] matches with [tex]\( 3x(5x^6y^2 + 1) \)[/tex]
- [tex]\( 15x^7 y^2 + 4x^3 \)[/tex] matches with [tex]\( x^3(15x^4y^2 + 4) \)[/tex]
In summary, here's the detailed matching:
1. [tex]\( 15 x^7 y^2 + 6xy \)[/tex] matches with [tex]\( 3xy(5 x^6 y + 2) \)[/tex]
2. [tex]\( 15 x^7 + 10 y^2 \)[/tex] matches with [tex]\( 5(3 x^7 + 2 y^2) \)[/tex]
3. [tex]\( 15 x^7 y^2 + 3 x \)[/tex] matches with [tex]\( 3 x(5 x^6 y^2 + 1) \)[/tex]
4. [tex]\( 15 x^7 y^2 + 4 x^3 \)[/tex] matches with [tex]\( x^3(15 x^4 y^2 + 4) \)[/tex]
1. Expression: [tex]\( 15x^7 y^2 + 6xy \)[/tex]
Factored form:
Let's break down the terms of the expression and look for common factors.
Both terms [tex]\( 15x^7y^2 \)[/tex] and [tex]\( 6xy \)[/tex] have [tex]\( xy \)[/tex] as a common factor.
Therefore, [tex]\( 15x^7y^2 + 6xy = xy(15x^6y + 6) \)[/tex].
2. Expression: [tex]\( 15x^7 + 10y^2 \)[/tex]
Factored form:
Let's break down the terms of the expression and look for common factors.
Both terms [tex]\( 15x^7 \)[/tex] and [tex]\( 10y^2 \)[/tex] have [tex]\( 5 \)[/tex] as a common factor.
Therefore, [tex]\( 15x^7 + 10y^2 = 5(3x^7 + 2y^2) \)[/tex].
3. Expression: [tex]\( 15x^7y^2 + 3x \)[/tex]
Factored form:
Let's break down the terms of the expression and look for common factors.
Both terms [tex]\( 15x^7y^2 \)[/tex] and [tex]\( 3x \)[/tex] have [tex]\( 3x \)[/tex] as a common factor.
Therefore, [tex]\( 15x^7y^2 + 3x = 3x(5x^6y^2 + 1) \)[/tex].
4. Expression: [tex]\( 15x^7y^2 + 4x^3 \)[/tex]
Factored form:
Let's break down the terms of the expression and look for common factors.
Both terms [tex]\( 15x^7y^2 \)[/tex] and [tex]\( 4x^3 \)[/tex] have [tex]\( x^3 \)[/tex] as a common factor.
Therefore, [tex]\( 15x^7y^2 + 4x^3 = x^3(15x^4y^2 + 4) \)[/tex].
Now, we can match each standard form expression with its factored form:
- [tex]\( 15x^7 y^2 + 6xy \)[/tex] matches with [tex]\( 3xy(5x^6y + 2) \)[/tex]
- [tex]\( 15x^7 + 10y^2 \)[/tex] matches with [tex]\( 5(3x^7 + 2y^2) \)[/tex]
- [tex]\( 15x^7 y^2 + 3x \)[/tex] matches with [tex]\( 3x(5x^6y^2 + 1) \)[/tex]
- [tex]\( 15x^7 y^2 + 4x^3 \)[/tex] matches with [tex]\( x^3(15x^4y^2 + 4) \)[/tex]
In summary, here's the detailed matching:
1. [tex]\( 15 x^7 y^2 + 6xy \)[/tex] matches with [tex]\( 3xy(5 x^6 y + 2) \)[/tex]
2. [tex]\( 15 x^7 + 10 y^2 \)[/tex] matches with [tex]\( 5(3 x^7 + 2 y^2) \)[/tex]
3. [tex]\( 15 x^7 y^2 + 3 x \)[/tex] matches with [tex]\( 3 x(5 x^6 y^2 + 1) \)[/tex]
4. [tex]\( 15 x^7 y^2 + 4 x^3 \)[/tex] matches with [tex]\( x^3(15 x^4 y^2 + 4) \)[/tex]