Solve the compound inequality for [tex]\( x \)[/tex]:

[tex]\[ -7 \leq 6x + 5 \leq 23 \][/tex]

Select one:
a. [tex]\(-1 \leq x \leq \frac{14}{3}\)[/tex]
b. [tex]\(-1 \leq x \leq 6\)[/tex]
c. [tex]\(-2 \leq x \leq 3\)[/tex]
d. [tex]\(-12 \leq x \leq 108\)[/tex]



Answer :

To solve the compound inequality:
[tex]\[ -7 \leq 6x + 5 \leq 23 \][/tex]

we need to address each part of the compound inequality separately.

1. Solve the left inequality:
[tex]\[ -7 \leq 6x + 5 \][/tex]

First, isolate [tex]\(6x\)[/tex] by subtracting 5 from both sides:
[tex]\[ -7 - 5 \leq 6x \][/tex]
[tex]\[ -12 \leq 6x \][/tex]

Next, divide both sides by 6 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{-12}{6} \leq x \][/tex]
[tex]\[ -2 \leq x \][/tex]

2. Solve the right inequality:
[tex]\[ 6x + 5 \leq 23 \][/tex]

First, isolate [tex]\(6x\)[/tex] by subtracting 5 from both sides:
[tex]\[ 6x + 5 - 5 \leq 23 - 5 \][/tex]
[tex]\[ 6x \leq 18 \][/tex]

Next, divide both sides by 6 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{18}{6} \leq x \][/tex]
[tex]\[ x \leq 3 \][/tex]

3. Combine the solutions from both inequalities:
[tex]\[ -2 \leq x \leq 3 \][/tex]

So the solution to the compound inequality is:
[tex]\[ -2 \leq x \leq 3 \][/tex]

By evaluating the provided choices, we can see that the correct interval for [tex]\(x\)[/tex] is:
[tex]\[ \text{c. } -2 \leq x \leq 3 \][/tex]