Answer :
To find the density of the object, we start with the given mass and volume.
The formula for density [tex]\( (\rho) \)[/tex] is:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
Given:
[tex]\[ \text{mass} = 32.1 \text{ grams} \][/tex]
[tex]\[ \text{volume} = 41.25 \text{ milliliters} \][/tex]
We need to divide the mass by the volume:
[tex]\[ \rho = \frac{32.1 \text{ grams}}{41.25 \text{ milliliters}} \][/tex]
Performing this division, we get the density:
[tex]\[ \rho = 0.7778787878787879 \text{ grams per milliliter} \][/tex]
However, we need to report the density to the correct number of significant figures. To determine the number of significant figures in our result, we look at the given values:
- The mass [tex]\(32.1 \text{ grams}\)[/tex] has 3 significant figures.
- The volume [tex]\(41.25 \text{ milliliters}\)[/tex] has 4 significant figures.
The result must be reported to the least number of significant figures in the given values, which is 3 in this case. Therefore, we round [tex]\(0.7778787878787879\)[/tex] to 3 significant figures.
So, the correct density is:
[tex]\[ \rho = 0.778 \text{ grams per milliliter} \][/tex]
Thus, the density of the object reported to the correct number of significant figures is:
[tex]\[ \boxed{0.778 \frac{\text{grams}}{\text{milliliter}}} \][/tex]
The formula for density [tex]\( (\rho) \)[/tex] is:
[tex]\[ \rho = \frac{\text{mass}}{\text{volume}} \][/tex]
Given:
[tex]\[ \text{mass} = 32.1 \text{ grams} \][/tex]
[tex]\[ \text{volume} = 41.25 \text{ milliliters} \][/tex]
We need to divide the mass by the volume:
[tex]\[ \rho = \frac{32.1 \text{ grams}}{41.25 \text{ milliliters}} \][/tex]
Performing this division, we get the density:
[tex]\[ \rho = 0.7778787878787879 \text{ grams per milliliter} \][/tex]
However, we need to report the density to the correct number of significant figures. To determine the number of significant figures in our result, we look at the given values:
- The mass [tex]\(32.1 \text{ grams}\)[/tex] has 3 significant figures.
- The volume [tex]\(41.25 \text{ milliliters}\)[/tex] has 4 significant figures.
The result must be reported to the least number of significant figures in the given values, which is 3 in this case. Therefore, we round [tex]\(0.7778787878787879\)[/tex] to 3 significant figures.
So, the correct density is:
[tex]\[ \rho = 0.778 \text{ grams per milliliter} \][/tex]
Thus, the density of the object reported to the correct number of significant figures is:
[tex]\[ \boxed{0.778 \frac{\text{grams}}{\text{milliliter}}} \][/tex]