Answer :
The given information tells us that [tex]$XYZ$[/tex] is an isosceles right triangle, specifically a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle. To prove that the hypotenuse ([tex]$c$[/tex]) is [tex]$\sqrt{2}$[/tex] times the length of each leg ([tex]$a$[/tex]), we start by recognizing that the triangle adheres to the Pythagorean theorem.
1. Establishing the Pythagorean theorem for this triangle:
Since [tex]$XYZ$[/tex] is a 45°-45°-90° triangle, both legs (let's call them [tex]$a$[/tex]) are equal:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
2. Combining like terms:
Adding [tex]$a^2 + a^2$[/tex] gives us [tex]$2a^2$[/tex], so we have:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Solving for [tex]$c$[/tex]:
To find [tex]$c$[/tex], we need to isolate [tex]$c$[/tex] on one side of the equation. First, we divide both sides by 2:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
4. Taking the principal square root of both sides:
To find [tex]$c$[/tex], we take the square root of both sides:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
Multiplying both sides by [tex]$\sqrt{2}$[/tex] to solve for [tex]$c$[/tex]:
[tex]\[ c = a\sqrt{2} \][/tex]
Thus, we have shown that the hypotenuse [tex]$c$[/tex] in a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle is [tex]$\sqrt{2}$[/tex] times the length of either leg [tex]$a$[/tex]:
[tex]\[ c = a\sqrt{2} \][/tex]
This completes the proof.
1. Establishing the Pythagorean theorem for this triangle:
Since [tex]$XYZ$[/tex] is a 45°-45°-90° triangle, both legs (let's call them [tex]$a$[/tex]) are equal:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
2. Combining like terms:
Adding [tex]$a^2 + a^2$[/tex] gives us [tex]$2a^2$[/tex], so we have:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Solving for [tex]$c$[/tex]:
To find [tex]$c$[/tex], we need to isolate [tex]$c$[/tex] on one side of the equation. First, we divide both sides by 2:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
4. Taking the principal square root of both sides:
To find [tex]$c$[/tex], we take the square root of both sides:
[tex]\[ a = \frac{c}{\sqrt{2}} \][/tex]
Multiplying both sides by [tex]$\sqrt{2}$[/tex] to solve for [tex]$c$[/tex]:
[tex]\[ c = a\sqrt{2} \][/tex]
Thus, we have shown that the hypotenuse [tex]$c$[/tex] in a [tex]$45^{\circ}-45^{\circ}-90^{\circ}$[/tex] triangle is [tex]$\sqrt{2}$[/tex] times the length of either leg [tex]$a$[/tex]:
[tex]\[ c = a\sqrt{2} \][/tex]
This completes the proof.