Answer :

Let's solve this problem step-by-step.

### Step 1: Simplify the fractions

First, simplify the fractions given in the problem:

- Simplifying [tex]\(\frac{12}{3}\)[/tex]:
[tex]\[ \frac{12}{3} = 4 \][/tex]

- Simplifying [tex]\(\frac{2}{2}\)[/tex]:
[tex]\[ \frac{2}{2} = 1 \][/tex]

- [tex]\(\frac{-7}{168}\)[/tex] is already in its simplest form.

So now we have the simplified fractions:
[tex]\[ \frac{12}{3} = 4, \quad \frac{2}{2} = 1, \quad \text{and} \quad \frac{-7}{168} = -0.041666666666666664 \][/tex]

### Step 2: Calculate the product of the first two fractions

Next, we need to find the product of [tex]\(\frac{12}{3}\)[/tex] (which is 4) and [tex]\(\frac{-7}{168}\)[/tex]:

[tex]\[ 4 \times (-0.041666666666666664) = -0.16666666666666666 \][/tex]

### Step 3: Subtract the third fraction from the product

Now, subtract [tex]\(\frac{2}{2}\)[/tex] (which is 1) from the resulting product:

[tex]\[ -0.16666666666666666 - 1 = -1.1666666666666667 \][/tex]

### Final Result

So, the final answer to the problem, subtracting [tex]\(\frac{2}{2}\)[/tex] from the product of [tex]\(\frac{12}{3}\)[/tex] and [tex]\(\frac{-7}{168}\)[/tex], is:

[tex]\[ \boxed{-1.1666666666666667} \][/tex]