Let's solve this problem step-by-step.
### Step 1: Simplify the fractions
First, simplify the fractions given in the problem:
- Simplifying [tex]\(\frac{12}{3}\)[/tex]:
[tex]\[
\frac{12}{3} = 4
\][/tex]
- Simplifying [tex]\(\frac{2}{2}\)[/tex]:
[tex]\[
\frac{2}{2} = 1
\][/tex]
- [tex]\(\frac{-7}{168}\)[/tex] is already in its simplest form.
So now we have the simplified fractions:
[tex]\[
\frac{12}{3} = 4, \quad \frac{2}{2} = 1, \quad \text{and} \quad \frac{-7}{168} = -0.041666666666666664
\][/tex]
### Step 2: Calculate the product of the first two fractions
Next, we need to find the product of [tex]\(\frac{12}{3}\)[/tex] (which is 4) and [tex]\(\frac{-7}{168}\)[/tex]:
[tex]\[
4 \times (-0.041666666666666664) = -0.16666666666666666
\][/tex]
### Step 3: Subtract the third fraction from the product
Now, subtract [tex]\(\frac{2}{2}\)[/tex] (which is 1) from the resulting product:
[tex]\[
-0.16666666666666666 - 1 = -1.1666666666666667
\][/tex]
### Final Result
So, the final answer to the problem, subtracting [tex]\(\frac{2}{2}\)[/tex] from the product of [tex]\(\frac{12}{3}\)[/tex] and [tex]\(\frac{-7}{168}\)[/tex], is:
[tex]\[
\boxed{-1.1666666666666667}
\][/tex]