Select the best answer for the question.

Factor [tex]3h^2 - 11h - 42[/tex] completely.

A. [tex](3h + 7)(h - 6)[/tex]
B. [tex]3(h + 7)(h - 6)[/tex]
C. [tex](3h - 7)(h + 6)[/tex]
D. [tex](3h - 6)(h + 7)[/tex]



Answer :

To factor the quadratic polynomial [tex]\(3h^2 - 11h - 42\)[/tex] completely, we need to find the factors of the form [tex]\((ah + b)(ch + d)\)[/tex] that multiply together to give the original polynomial.

Given the polynomial [tex]\(3h^2 - 11h - 42\)[/tex], the correct factorization is:

[tex]\[ (h - 6)(3h + 7) \][/tex]

Let's verify it:

1. Multiply the factors:

[tex]\[ (h - 6)(3h + 7) \][/tex]

2. Use the distributive property (FOIL method) to expand:

[tex]\[ = h \cdot 3h + h \cdot 7 - 6 \cdot 3h - 6 \cdot 7 \][/tex]

[tex]\[ = 3h^2 + 7h - 18h - 42 \][/tex]

3. Combine like terms:

[tex]\[ = 3h^2 - 11h - 42 \][/tex]

This matches the original quadratic polynomial, confirming that the factorization is correct. Therefore, the correct answer is:

A. [tex]\((3h + 7)(h - 6)\)[/tex]