If possible, use logarithm properties to rewrite the expression [tex]\left(\log \frac{1}{y^8}\right)^2[/tex] in terms of [tex]v[/tex] given that [tex]v=\log y[/tex].

Note: Your answer should not involve logs.

[tex]\[ \left(\log \frac{1}{y^8}\right)^2 = \boxed{\square} \][/tex]



Answer :

To rewrite the expression [tex]\(\left(\log \frac{1}{y^8}\right)^2\)[/tex] in terms of [tex]\(v\)[/tex] given that [tex]\(v = \log y\)[/tex], we can follow these steps:

1. Use the properties of logarithms:
[tex]\[ \log \left(\frac{1}{y^8}\right) = \log 1 - \log(y^8) \][/tex]
We know that [tex]\(\log 1 = 0\)[/tex]. So the expression simplifies to:
[tex]\[ \log 1 - \log(y^8) = -\log(y^8) \][/tex]

2. Apply the power rule of logarithms:
[tex]\[ -\log(y^8) = -8 \log(y) \][/tex]

3. Substitute [tex]\(v\)[/tex] for [tex]\(\log(y)\)[/tex]:
[tex]\[ -8 \log(y) = -8 v \][/tex]

4. Square the expression:
[tex]\[ \left(-8 v\right)^2 \][/tex]

5. Simplify the squared expression:
[tex]\[ (-8 v)^2 = 64 v^2 \][/tex]

Thus, the expression [tex]\(\left(\log \frac{1}{y^8}\right)^2\)[/tex] in terms of [tex]\(v\)[/tex] is:
[tex]\[ 64 v^2 \][/tex]