Select the correct answer.

Which function defines [tex](g \cdot f)(x)[/tex]?

[tex]
\begin{array}{l}
f(x)=\log (5x) \\
g(x)=5x+4
\end{array}
[/tex]

A. [tex](g \cdot f)(x)=5x+4+\log (5x)[/tex]
B. [tex](g \cdot f)(x)=5x \log (5x)+4[/tex]
C. [tex](g \cdot f)(x)=5x-4-\log (5x)[/tex]
D. [tex](g \cdot f)(x)=5x \log (5x)+4 \log (5x)[/tex]



Answer :

In order to find the function [tex]\((g \cdot f)(x)\)[/tex], we first need to clarify what this notation means. The notation [tex]\((g \cdot f)(x)\)[/tex] typically stands for the composition of the functions [tex]\(g(x)\)[/tex] and [tex]\(f(x)\)[/tex], represented as [tex]\(g(f(x))\)[/tex]. This means we will substitute the entire function [tex]\(f(x)\)[/tex] into the function [tex]\(g(x)\)[/tex].

Given the functions:
[tex]\[ f(x) = \log(5x) \][/tex]
[tex]\[ g(x) = 5x + 4 \][/tex]

Step-by-step solution:

1. Evaluate [tex]\(f(x)\)[/tex] to get [tex]\(f(x) = \log(5x)\)[/tex].

2. Substitute [tex]\(f(x) = \log(5x)\)[/tex] into [tex]\(g(x)\)[/tex]:
[tex]\[ g(f(x)) = g(\log(5x)) \][/tex]

3. Next, replace [tex]\(x\)[/tex] in [tex]\(g(x)\)[/tex] with [tex]\(\log(5x)\)[/tex]:
[tex]\[ g(\log(5x)) = 5(\log(5x)) + 4 \][/tex]

4. So, the function [tex]\((g \cdot f)(x)\)[/tex] becomes:
[tex]\[ (g \cdot f)(x) = 5 \log(5x) + 4 \][/tex]

Now, let's check if this matches any of the given options:

- A. [tex]\((g \cdot f)(x) = 5x + 4 + \log(5x)\)[/tex]
- B. [tex]\((g \cdot f)(x) = 5x \log(5x) + 4\)[/tex]
- C. [tex]\((g \cdot f)(x) = 5x - 4 - \log(5x)\)[/tex]
- D. [tex]\((g \cdot f)(x) = 5x \log(5x) + 4 \log(5x)\)[/tex]

The correct answer matches our derived function:
[tex]\[ (g \cdot f)(x) = 5 \log(5x) + 4 \][/tex]

None of the given options match this exactly, indicating a potential error in the problem statement. However, based on the derivation, the correct function should ideally be:
[tex]\[ (g \cdot f)(x) = 5 \log(5x) + 4 \][/tex]