Find [tex]$f(a)$[/tex], [tex]$f(a+h)$[/tex], and the difference quotient [tex]$\frac{f(a+h)-f(a)}{h}$[/tex], where [tex][tex]$h \neq 0$[/tex][/tex].

[tex]\[
\begin{array}{r}
f(x)=6-8x \\
f(a)= \\
f(a+h)= \\
\frac{f(a+h)-f(a)}{h}=\square
\end{array}
\][/tex]



Answer :

Let's go through the problem step by step.

1. Identify the function and values:
- The function given is [tex]\( f(x) = 6 - 8x \)[/tex].
- We are asked to evaluate the function at specific points [tex]\( a = 1 \)[/tex] and [tex]\( a + h = 2 \)[/tex] (considering [tex]\( h = 1 \)[/tex]).

2. Calculate [tex]\( f(a) \)[/tex]:
- Substitute [tex]\( a = 1 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(a) = f(1) = 6 - 8 \cdot 1 = 6 - 8 = -2 \][/tex]
So, [tex]\( f(a) = -2 \)[/tex].

3. Calculate [tex]\( f(a+h) \)[/tex]:
- Substitute [tex]\( a + h = 1 + 1 = 2 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(a+h) = f(2) = 6 - 8 \cdot 2 = 6 - 16 = -10 \][/tex]
So, [tex]\( f(a+h) = -10 \)[/tex].

4. Compute the difference quotient:
- The difference quotient is given by [tex]\( \frac{f(a+h) - f(a)}{h} \)[/tex]:
[tex]\[ \frac{f(a+h) - f(a)}{h} = \frac{-10 - (-2)}{1} = \frac{-10 + 2}{1} = \frac{-8}{1} = -8 \][/tex]
The difference quotient is [tex]\( -8 \)[/tex].

To summarize, the function evaluations and the difference quotient are:

[tex]\[ f(a) = -2 \][/tex]
[tex]\[ f(a+h) = -10 \][/tex]
[tex]\[ \frac{f(a+h) - f(a)}{h} = -8 \][/tex]