Select the correct answer.

The energy of a given wave in the electromagnetic spectrum is [tex]$2.64 \times 10^{-21}$[/tex] joules, and the value of Planck's constant is [tex]$6.6 \times 10^{-34}$[/tex] joule-seconds. What is the value of the frequency of the wave?

A. [tex][tex]$4.00 \times 10^{12}$[/tex][/tex] hertz
B. [tex]$2.34 \times 10^{-12}$[/tex] hertz
C. [tex]$1.30 \times 10^{13}$[/tex] hertz
D. [tex][tex]$2.52 \times 10^{-6}$[/tex][/tex] hertz
E. [tex]$8.11 \times 10^{-7}$[/tex] hertz



Answer :

Certainly! Let's go through the calculation in detail.

We are given:
- Energy ([tex]\( E \)[/tex]) of the wave: [tex]\( 2.64 \times 10^{-21} \)[/tex] joules
- Planck's constant ([tex]\( h \)[/tex]): [tex]\( 6.6 \times 10^{-34} \)[/tex] joule-seconds

To find the frequency ([tex]\( f \)[/tex]) of the wave, we use Planck's equation:
[tex]\[ E = h \cdot f \][/tex]

We need to solve for [tex]\( f \)[/tex]:
[tex]\[ f = \frac{E}{h} \][/tex]

Substitute the given values into the equation:
[tex]\[ f = \frac{2.64 \times 10^{-21}}{6.6 \times 10^{-34}} \][/tex]

Now, perform the division:
[tex]\[ f = 4.00 \times 10^{12} \, \text{hertz} \][/tex]

So, the frequency of the wave is:
[tex]\[ f = 4.00 \times 10^{12} \, \text{hertz} \][/tex]

Therefore, the correct answer is:
A. [tex]\( 4.00 \times 10^{12} \)[/tex] hertz