The table represents an exponential function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & 0.25 \\
\hline
2 & 0.125 \\
\hline
3 & 0.0625 \\
\hline
4 & 0.03125 \\
\hline
\end{tabular}

What is the multiplicative rate of change of the function?

A. 0.2
B. 0.25
C. 0.5
D. 0.75



Answer :

To determine the multiplicative rate of change of the exponential function represented by the table, we need to identify how the [tex]\( y \)[/tex]-values change as the [tex]\( x \)[/tex]-values increase.

The values given in the table are:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0.25 \\ \hline 2 & 0.125 \\ \hline 3 & 0.0625 \\ \hline 4 & 0.03125 \\ \hline \end{array} \][/tex]

The multiplicative rate of change in an exponential function can be found by calculating the ratio of consecutive [tex]\( y \)[/tex]-values.

1. For [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]:

[tex]\[ \text{Rate of change} = \frac{y_2}{y_1} = \frac{0.125}{0.25} = 0.5 \][/tex]

2. For [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]:

[tex]\[ \text{Rate of change} = \frac{y_3}{y_2} = \frac{0.0625}{0.125} = 0.5 \][/tex]

3. For [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]:

[tex]\[ \text{Rate of change} = \frac{y_4}{y_3} = \frac{0.03125}{0.0625} = 0.5 \][/tex]

We observe that the rate of change is consistent across all intervals. Since it is constant, we confirm that the multiplicative rate of change for the function is:

[tex]\[ \boxed{0.5} \][/tex]

Other Questions