What is the product?

[tex]\[ \left(-6a^3b + 2ab^2\right)\left(5a^2 - 2ab^2 - b\right) \][/tex]

A. [tex]\(-30a^6b + 12a^3b^2 + 6a^3b + 10a^2b^2 - 4ab^4 - 2ab^2\)[/tex]

B. [tex]\(-30a^5b + 12a^4b^3 + 16a^3b^2 - 4a^2b^4 - 2ab^3\)[/tex]

C. [tex]\(30a^5b - 12a^4b^3 + 4a^3b^2 - 4a^2b^4 - 2ab^3\)[/tex]

D. [tex]\(30a^6b - 12a^3b^2 - 6a^3b + 10a^2b^2 - 4ab^4 - 2ab^2\)[/tex]



Answer :

To find the product [tex]\(\left(-6 a^3 b + 2 a b^2\right)\left(5 a^2 - 2 a b^2 - b\right)\)[/tex], we will perform polynomial multiplication and combine like terms. Here’s the step-by-step process:

First, we distribute [tex]\( (-6 a^3 b) \)[/tex] across each term inside the second parenthesis:
[tex]\[ -6 a^3 b \cdot 5 a^2 = -30 a^5 b \][/tex]
[tex]\[ -6 a^3 b \cdot (-2 a b^2) = 12 a^4 b^3 \][/tex]
[tex]\[ -6 a^3 b \cdot (-b) = 6 a^3 b^2 \][/tex]

Next, we distribute [tex]\( 2 a b^2 \)[/tex] across each term inside the second parenthesis:
[tex]\[ 2 a b^2 \cdot 5 a^2 = 10 a^3 b^2 \][/tex]
[tex]\[ 2 a b^2 \cdot (-2 a b^2) = -4 a^2 b^4 \][/tex]
[tex]\[ 2 a b^2 \cdot (-b) = -2 a b^3 \][/tex]

Now, we combine all the products together:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 6 a^3 b^2 + 10 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

We then combine the like terms:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + (6 a^3 b^2 + 10 a^3 b^2) - 4 a^2 b^4 - 2 a b^3 \][/tex]
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

So, the product is:
[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]

Therefore, the correct answer is:

[tex]\[ -30 a^5 b + 12 a^4 b^3 + 16 a^3 b^2 - 4 a^2 b^4 - 2 a b^3 \][/tex]