Solve the absolute value inequality for [tex]x[/tex]:
[tex]
3|x-1| \leq 12
[/tex]

Select one:
A. [tex]\frac{-3}{5} \leq x \leq 4[/tex]
B. [tex]-11 \leq x \ \textless \ 16[/tex]
C. [tex]x \leq -3 \text{ or } x \geq 5[/tex]
D. [tex]-3 \leq x \leq 5[/tex]



Answer :

To solve the absolute value inequality [tex]\(3|x-1| \leq 12\)[/tex], follow these step-by-step instructions:

1. Isolate the absolute value:

Start by dividing both sides of the inequality by 3:
[tex]\[ \frac{3|x-1|}{3} \leq \frac{12}{3} \][/tex]
This simplifies to:
[tex]\[ |x-1| \leq 4 \][/tex]

2. Solve the absolute value inequality:

Recall that [tex]\(|x - 1| \leq 4\)[/tex] means the expression inside the absolute value, [tex]\(x - 1\)[/tex], must lie between [tex]\(-4\)[/tex] and [tex]\(4\)[/tex]. This can be expressed by the compound inequality:
[tex]\[ -4 \leq x - 1 \leq 4 \][/tex]

3. Solve the compound inequality:

To clear the absolute value, separate it into two inequalities and solve for [tex]\(x\)[/tex]:
[tex]\[ -4 \leq x - 1 \quad \text{and} \quad x - 1 \leq 4 \][/tex]

Add 1 to all sides of the inequalities to solve for [tex]\(x\)[/tex]:
[tex]\[ -4 + 1 \leq x - 1 + 1 \quad \text{and} \quad x - 1 + 1 \leq 4 + 1 \][/tex]
Simplifying these gives:
[tex]\[ -3 \leq x \quad \text{and} \quad x \leq 5 \][/tex]

4. Write the final answer:

Combining the two parts of the compound inequality, we get:
[tex]\[ -3 \leq x \leq 5 \][/tex]

The correct answer is:

d. [tex]\( -3 \leq x \leq 5 \)[/tex]