Given:
[tex]\[ f(x) = x^2 + 1 \][/tex]
[tex]\[ g(x) = 5 - x \][/tex]

Calculate [tex]\((f - g)(x)\)[/tex].

A. [tex]\( x^2 - x + 6 \)[/tex]
B. [tex]\( x^2 + x + 4 \)[/tex]
C. [tex]\( x^2 + x + 6 \)[/tex]
D. [tex]\( x^2 + x - 4 \)[/tex]



Answer :

To find [tex]\((f-g)(x)\)[/tex], we need to subtract [tex]\(g(x)\)[/tex] from [tex]\(f(x)\)[/tex]. We start with the definitions of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ f(x) = x^2 + 1 \][/tex]
[tex]\[ g(x) = 5 - x \][/tex]

We want to find:

[tex]\[ (f - g)(x) = f(x) - g(x) \][/tex]

Substituting in the given functions:

[tex]\[ (f - g)(x) = (x^2 + 1) - (5 - x) \][/tex]

Next, we distribute the subtraction across the terms inside the parentheses:

[tex]\[ (f - g)(x) = x^2 + 1 - 5 + x \][/tex]

Now, combine like terms:

[tex]\[ (f - g)(x) = x^2 + x + 1 - 5 \][/tex]
[tex]\[ (f - g)(x) = x^2 + x - 4 \][/tex]

So, the simplified expression for [tex]\((f - g)(x)\)[/tex] is:

[tex]\[ x^2 + x - 4 \][/tex]

Therefore, the correct answer from the given options is:

[tex]\[ \boxed{x^2 + x - 4} \][/tex]